
2025/03/10 13:45 1/7 Scenario Syntax

Technical documentation - https://wiki.netyce.com/

Scenario Syntax

This article describes the syntax for the scenarios and all of its operators.

All of the syntax described needs to be placed under the [scenario] header.

Variables

Variables can store data, like a string or information returned from commands. This could either be a
list or a hash.

Here is more information on scenario command syntax. These variables can be read, manipulated and
interacted with.

List Variables

A standard variable is a list variable, containing zero or more items. It is of the form <list>. It can be
assigned as follows:

Legacy scenario syntax used an equal sing “=”. This is still backwards compatible.

<list> := "value" # assign list one literal 'value'
<list> := <item> # assign list the value of item
<list> := <list2> # assign list the values of list2
<list> := command [option arguments list] # assign list the result values
of the command

<list> += "value" # append 'value' to the list
<list> += <item> # append the value of item to the list
<list> += <list2> # append the values from list2 to list
<list> += command [option arguments list] # append to list the result
values of the command

<list> -= "value" # remove 'value' from the list
<list> -= <item> # remove value of item from the list
<list> -= <list2> # remove values of list2 from list
<list> -= command [option arguments list] # remove command result(s) from
list

Lists can be assigned as parameters for commands:

LogAction -n <node> -a Command_job -m "<node> is reachable"
<interfaces> := Parse_run -n <node> -t Interfaces_<vendor_type> -c <context>
-v "<if_name>"

If these variables contain more than one value, the first value of the list will be taken.

https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

Last update: 2024/07/03 12:31 menu:operate:scenarios:syntax https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:syntax

https://wiki.netyce.com/ Printed on 2025/03/10 13:45

Relations

Relations can be resolved and their result will be parsed into the scenario.

<vlan_id> := <Vlan_id@Port_subnets>
log_action -n <node> -a Command_job -m "A vlan id is: <vlan_id@vlans>"
log_action -n <node> -a Command_job -m "Vlan 1007 has net name:
<net_name@vlans:1007>"
log_action -n <node> -a Command_job -m "Vlan 1007 has net name:
<net_name@vlans:vlan_id=1007>"

Note that when resolving the scenario, the tasker first parses relations, and then it parses hash
variables. So relations have priority over hash variables.

Hash Variables

Before 7.1.0 the syntax was <@hash>

Some commands return hashes instead of lists (parse_cmd for example), denoted as <%hash>. The
syntax for hash variables is similar to that of relations, but with subtle differences. A hash variable is
initialised as follows:

<%hash> := hash_command [option arguments list]
<%interfaces> := Parse_cmd -n <node> -t Show_interface_brief -r "show
interface brief"

<%hash> := cmd_exec -n <node> # Will fail!

“interfaces” in the above line is the hash name. Hashes in essence are either hashes of lists, or
hashes of hashes of lists. More information on how to return what kind of hash in the command
parsing template syntax as an example.

To access variables of the simplest version, a hash of lists:

<%aaa> := Parse_cmd -n <node> -t Show_aaa_accounting -r "show aaa
accounting"
<aaa> := <aaa_acc_default%aaa>

aaa_acc_default in this case is the attribute of the hash with name aaa. This is a list, so therefore
it can be assigned one-on-one to the list variable <aaa>.

Hashes can be more complex than that, though. A hash of a hash can be accessed as follows:

<%cdp_variables> := Parse_cmd -n <node> -t Show_cdp_all -r "show cdp all"
log_action -n <node> -a Parse_cmd_test -m "show cdp all: Ethernet1/1 is
<Ethernet1/1.if_status%cdp_variables>"

Here, cdp_variables is the hash name, this hash contains a number of keys, amongst which is
Ethernet1/1. Key names can contain special characters, like /, \, and spaces, but not ., @, %, < or

https://wiki.netyce.com/doku.php?id=guides:user:command_parsing_templates
https://wiki.netyce.com/doku.php?id=guides:user:command_parsing_templates

2025/03/10 13:45 3/7 Scenario Syntax

Technical documentation - https://wiki.netyce.com/

>. We then look for the list in the attribute named if_status. This too is a list. Hash names and
attribute names can only contain alphanumeric characters and underscores.

To get a list of all keys, the keyword keys can be used:

<%cdp_variables> := Parse_cmd -n <node> -t Show_cdp_interface_ethernet -r
"show cdp interface Ethernet1/1"
<devices> := keys <%cdp_variables>
foreach <device> in <devices>
 <vlan> := <device.device_vlan%cdp_variables>
 log_action -n <node> -a Parse_cmd_test -m "show cdp interface
Ethernet1/1: <device> has vlan <vlan>"
endeach

Note: This example previously showed an incorrect assignment of a keyed hash value: <vlan> :=
«device>.device_vlan%cdp_variables> This 'nested' use of the hash-key is incorrect.

Details on foreach can be found below, but note that a key in calling a hash variable can be either a
literal or the contents of a list variable. If the length of this list variable is bigger than 1, the first item
of this list is taken.

Error

If a scenario command fails, this is stored in the <error> variable. The <error> variable is
equivalent to error, but the former is better practice. The error variable can then be checked within
an if statement, for example:

reachable -n <node>
if <error>
 log_action -n <node> -a Command_job -m "<node> is not reachable"
 stop
endif
log_action -n <node> -a Command_job -m "<node> is reachable"

More details on the error can be found in the job logs.

Conditionals and Loops

if <condition>

Conditional execution. This can be nested. Conditions have the form “<variable> <operator>
<variable>” or “<variable>”.
<variable> can be either a list variable, or a list in a hash variable, if the list has more than one
items, the first item is used for comparison. <operator> is one of ==, <>, >=, <=, >, <, !=.

Beyond that, variables can also be extended with extra operations:

Last update: 2024/07/03 12:31 menu:operate:scenarios:syntax https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:syntax

https://wiki.netyce.com/ Printed on 2025/03/10 13:45

 if ! <variable> Negation
 if not <variable> Negation
 if count <variable> Count the number of values in <variable>
 if <error> The result of the last executed command

Note that <error> always has the value 1 or 0. You can compare it against another variable this way.

Examples:

if <variable> == "abc.com"
if not <variable> == "abc.com"
if <variable> != "abc.com"
if <variableA> == <variableB>
if <variableA>

Notes:

Strings should be quoted in a condition and be on the right side
<Variables> don't need quotes in conditions.

Unless it contains one or more of these special characters: [|] ! @ # $ ^ & + = '
“ : ; < >

else

Follows an if-statement. If this if fails, the code below else gets executed.

endif

Close the current if or else condition.

foreach <item> in <list>

Loop through a list and run code for each item in this list, marked between a foreach and endeach
statement. Foreach loops can be nested alongside if statements.

foreach <item> in <list>
 # do something
endeach

<item> is a list variable, containing only one variable. It works just like any other list variables.
<list> can also be a list from a hash variable:

foreach <item> in <key.attribute%hash>
 # do something
endeach

2025/03/10 13:45 5/7 Scenario Syntax

Technical documentation - https://wiki.netyce.com/

endeach

Marks the end of the current foreach loop.

next

Abort execution of the current foreach loop and move on to the next item in the list.

last

Jump out of the current foreach loop.

List Operations

Lists can be manipulated by simple operations.

Note these are some additional, advanced, commands that operate on lists and require options. They
are included in the Scenario Commands details page.

These include the commands: “sort”, “like”, “concat”, “grep” and “keys”.

reverse

Take a list, and return it in reverse order.

<revlist> := reverse <list>

push

Push item to end of list. Same as <list> += <item>

<list> := push <item>
<list> := push 2
<list> := push <key.attribute%hash>

pop

Assign the last value of a list to the variable item and remove from it from the list.

<item> := pop <list>
<item> := pop <key.attribute%hash>

https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

Last update: 2024/07/03 12:31 menu:operate:scenarios:syntax https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:syntax

https://wiki.netyce.com/ Printed on 2025/03/10 13:45

unshift

Insert an item to front of the list. Same as <list> := <item>; <list> += <list2>

<list> := unshift <item>
<list> := unshift 2
<list> := unshift <key.attribute%hash>

shift

Assign the first value from the list to item and remove it from the list.

<item> := shift <list>
<item> := shift <key.attribute%hash>

null

Assign an empty list. If <list> already exists it will clear its values.

<list> := null

Other

description

Set the description of the scenario. If multiple descriptions are set in a scenario, the first one is taken.
This also applies when the description is set via an API call. Once set, it is not changed.

Description This is a scenario
Description <node> test scenario

stop

Quit scenario. The scenario will have failed and the job status will list ABORTED.

Make sure to read the Scenario Commands details on Error handling.

Here the usage of “STOP” and “END” is clarified and how the “stop on-error” can provide a default
job ABORT on any error and a “stop default” will resume normal error handling.

end

https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands#error_handling

2025/03/10 13:45 7/7 Scenario Syntax

Technical documentation - https://wiki.netyce.com/

Quit scenario, signal that the scenario succeeded. It may be used to halt a scenario at any point and
set the job status to SUCCESSFUL. All scenarios have the END implicitly added at the bottom resulting
in a SUCCESSFUL job by default.

task

It is currently possible to use a named scenario as a 'task' inside a scenario. It gets substituted with
its contents before being parsed. This is supported till a maximum of 50 levels deep.

task := another_scenario

comments

Comments can be added to the scenario using the '#' sign. They are to be used on their own lines
only.

some comment
if <var1> == <var2>
 # it is expected to enter here.
 do_something
endif

Examples

Several examples can be found on the scenarios example page

From:
https://wiki.netyce.com/ - Technical documentation

Permanent link:
https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:syntax

Last update: 2024/07/03 12:31

https://wiki.netyce.com/doku.php?id=guides:user:scenarios:scenarios
https://wiki.netyce.com/
https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:syntax

	Scenario Syntax
	Variables
	List Variables
	Relations
	Hash Variables
	Error

	Conditionals and Loops
	if <condition>
	else
	endif
	foreach <item> in <list>
	endeach
	next
	last

	List Operations
	reverse
	push
	pop
	unshift
	shift
	null

	Other
	description
	stop
	end
	task
	comments

	Examples

