
2025/10/19 09:36 1/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

Scenario Commands

Scenario Commands can be called upon in scenarios. They can return nothing, a list variable or a hash
variable. When they fail, the <error>-variable is set.

Several of the commands will benefit from the support of 'here documents' as a way to avoid creating
trivial templates. Please see the section on Here documents

Commands

cmd_exec

Execute command line-by line on cli of a NetYCE managed node.

Mandatory options:

 -n node hostname of the node
 -f cmd_file file containing the commands you want to execute

Optional options:

 [-o <origin>] use the 'origin' node as the context node. Commands
are executed on the -n node.
 [-c <connect>] use 'console', 'api' or 'management' connection
 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node
 [-v <vendor>] overrides the vendor type of the node
 [-q] sets quick-mode: skip config save/backup/nccm
 [-e] cancels the normal stop-on-error behaviour
 [-u <operator>] use NetYCE <operator> credentials for first attempt
to logon to the device.

The -u option refers to a NetYCE user account. The username and password of this account will be
used to login to the device. When available, the Device password value will be used as the
password instead of the login password of the account. This NetYCE account will be used as the
first set of credentials to login to the device. The rme_user and local_user credentials will still
be attempted should login fail.

The -e option overrides the default behaviour of aborting all remaining commands when an error
was detected. When used, the device response is not checked for errors or warnings and
execution proceeds with the next command. The logs will not indicate an error was encountered.

cmd_exec_basic

Execute command line by line on cli of a node in the CMDB table

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

Mandatory options:

 -n node hostname of the node
 -f cmd_file file containing the commands you want to execute
 -a <node_addr> the address of the node
 -d <domain> the management domain of the node
 -v <vendor_type> the vendor type of the node

Optional options:

 [-c <connect>] use 'console', 'api' or 'management' connection
 [-u <operator>] use NetYCE <operator> credentials for first attempt
to logon to the device.

The -u option refers to a NetYCE user account. The username and password of this account will be
used to login to the device. When available, the Device password value will be used as the
password instead of the login password of the account. This NetYCE account will be used as the
first set of credentials to login to the device. The rme_user and local_user credentials will still
be attempted should login fail.

resched_job

Note This command is not available for releases prior to 7.2.0.

Schedule the running job to execute again. The resched_job command allows for recurring jobs.
It is included in a scenario to reschedule the same job for a later day and/or time. Since the
rescheduled job will execute the same scenario, this job will again be rescheduled for a later
moment. In effect, the task will become a repeated job.

To stop the job from rescheduling itself it needs to be manually 'cancelled' using the “Operate -
Jobs” tool.

Mandatory options

It is mandatory to specify the -i (interval) or -t (daytime) option.

 -i interval reschedule this job at the "interval" after current
start time
 "interval" format in 'd' 'h' 'm' or a combination
like "1d 2h 30m' or '72h"
 no 'now' supported
 -t daytime reschedule this job at "daytime"
 "daytime" format like "tomorrow 5:05" or "sunday
0:00"
 no 'now' or date supported

A maximum of eight (8) days can be scheduled ahead of the current time using either the 'interval'
or 'daytime' option. The valid values for the 'day' in the “daytime” format are: today, tomorrow,
monday, tuesday, wednesday, thursday, friday, saturday, sunday, or their three-letter
abbreviations.

2025/10/19 09:36 3/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

Using a '-t' option like 'today 18:00' will result in a job that repeats itself at 18:00 the same day,
but since at that time this 18:00 will be past, the re-scheduling will stop. No error is raised for this.
If the '-t' is 'tomorrow 18:00' the rescheduled job will again be scheduled for the next day as its
targeted time will forever be in the future.

Optional

 [-s] set server selection to '-auto-' instead of using same server

Job parameters are reused from the scheduler and job files: - reuse scenario file - reuse command
file - reuse parameters file - operator will stay the same - reuse the change-id - reuse the queue -
reuse the description - jobtype stays the same - reuse job-rule validations / approvals

The NetYCE server where the job will be rescheduled is the same as the current server by default.
Only when the '-s' option is used will the server set to -auto-. It is not possible to assign a
different server directly.

Configs

config_create

Generate commands from template.

Mandatory options:

 -n node hostname of the node

Optional options:

 [-t <template>] overrides the default main-template of
the node
 [-f <out_file>] override the default output file
'<node>.cmd'
 [-p parameter=<value>] define or overwrite variables for use in
template. it will not overwrite parameters
 It should be quoted if the value has
whitespaces.
 [-i <interface-list>] generate the config(s) for the portnames
listed
 [-x] extend (append) the commands to the
output file if one exists

Parameters already known within the context are not required to be provided manually.

Multiple '-p' arguments may be provided.

Configuration can also be created 'inline' using the following syntax. And pushing the configuration
using cmd_exec:

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

config_create -n <node> -f <node>_ntp.cmd <<EOT
 ntp server <ntp_server1>
 |<ntp_server2>|ntp server <ntp_server2>
EOT
cmd_exec -n <node> -f <node>_ntp.cmd

The here documents describe this functionality in more detail.

config_startup

Upload full config file and make startup.

Mandatory options:

 -n node hostname of the node
 -f cfg_file file containing the config you want to upload

Optional options:

 [-c <connect>] use 'console', 'api' or 'management' connection
 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node
 [-v <vendor>] overrides the vendor type of the node
 [-u <operator>] use NetYCE <operator> credentials for first attempt
to logon to the device.

The -u option refers to a NetYCE user account. The username and password of this account will be
used to login to the device. When available, the Device password value will be used as the
password instead of the login password of the account. This NetYCE account will be used as the
first set of credentials to login to the device. The rme_user and local_user credentials will still
be attempted should login fail.

config_save

Save config on device and download to nccm.

Mandatory options:

 -n node hostname of the node

Optional options:

 [-c <connect>] use 'console', 'api' or 'management' connection
 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node
 [-v <vendor>] overrides the vendor type of the node
 [-m <message>] adds a message to the nccm as the cause

2025/10/19 09:36 5/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

 [-u <operator>] use NetYCE <operator> credentials for first attempt
to logon to the device.

The -u option refers to a NetYCE user account. The username and password of this account will be
used to login to the device. When available, the Device password value will be used as the
password instead of the login password of the account. This NetYCE account will be used as the
first set of credentials to login to the device. The rme_user and local_user credentials will still
be attempted should login fail.

config_diff

Fetch running config and save it into the nccm

Mandatory options:

 -n node hostname of the node

Optional options:

 [-c <connect>] use 'console', 'api' or 'management' connection
 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node
 [-v <vendor>] overrides the vendor type of the node

This command will return an error if its backup cannot be retrieved or saved.

config_restore

Upload config from NCCM to the node as startup-configuration.

Mandatory options:

 -n node hostname of the node

Optional options:

 [-c <connect>] use 'console', 'api' or 'management' connection
 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node
 [-v <vendor>] overrides the vendor type of the node
 [-u <operator>] use NetYCE <operator> credentials for first attempt
to logon to the device.
 [-s <select>] specifies the NCCM configuration to select
 may be one of:
 'previous' select most recent config prior to a
command job.
 it selects the latest poll or pre-config
backup available.

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

 this is the default action if no -s
option is provided
 'last' select the most recent NCCM backup
available
 'poll' select the most recent NCCM polled backup
 'marked' select the NCCM config manually
identified ('marked')
 using the NCCM 'Config diff' tools.
 the mark will NOT be cleared after
execution.
 <jobid> select the NCCM config created by
specified jobid.
 jobs can create a pre-config backup if a
config change was detected
 before a config change is made, but will
also create a post-config backup.
 the config selected will be the final
(post-config) backup the job executed.
 <polltime> select the (first available) NCCM config
specified by date and timestamp.
 the date (yyy-mm-dd) must included in
full, the time may be partial (hh:mm:ss).
 a valid option value is therefore
"2018-04-25 14:28".
 <nccmid> select the NCCM config using the
specified nccmid.
 this option is only useful when direct
database access is available.

The -u option refers to a NetYCE user account. The username and password of this account will be
used to login to the device. When available, the Device password value will be used as the
password instead of the login password of the account. This NetYCE account will be used as the
first set of credentials to login to the device. The rme_user and local_user credentials will still
be attempted should login fail.

Parsing

parse_cmd

Run a show command on a node, and parse its output. Returns a hash variable with its result,
trying to put the results in a regular list variable will fail. (<%variable>, instead of <variable>).

Mandatory options:

 -n node hostname of the node
 -t <template> a command parsing template. More information on
[[howto:command_parsing_templates|command parsing templates]]
 -r <request> a request which command to execute to the node, for

2025/10/19 09:36 7/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

example "show interface brief"
 -c <client_type> the client type of the node. Use this if you have
multiple nodes with the same hostname (for example in the CMDB and YCE
database)

Some vendors allow the option to specify pipes '|' in the request. This is also allowed to be passed
through the command parsing, though you do need to be careful if you wish to use multiple pipes.

An example is shown for Junos, which allows multiple pipes with multiple commands. In this case it
is required to have them escaped (escaped with '\').

Before 7.1.0 the syntax was <@cmd>

<%cmd> := Parse_cmd -n <node> -t parsing_template -r "show configuration
routing-instances <Vrf_name> \| display set \| match interface"

Device

reboot_node

Restart the device.

Mandatory options:

 -n node hostname of the node

Optional options:

 [-c <connect>] use 'console', 'api' or 'management' connection
 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node
 [-v <vendor>] overrides the vendor type of the node
 [-u <operator>] use NetYCE <operator> credentials for first attempt
to logon to the device.

The -u option refers to a NetYCE user account. The username and password of this account will be
used to login to the device. When available, the Device password value will be used as the
password instead of the login password of the account. This NetYCE account will be used as the
first set of credentials to login to the device. The rme_user and local_user credentials will still
be attempted should login fail.

clear_console

Reset the console line on the terminal server

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

Mandatory options:

 -n node hostname of the node

Optional options:

 [-c <connect>] use 'console', 'api' or 'management' connection
 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node
 [-v <vendor>] overrides the vendor type of the node
 [-t <term_srv>] terminal server name
 [-l <line>] line number on terminal server to reset
 [-u <operator>] use NetYCE <operator> credentials for first attempt
to logon to the device.

The -u option refers to a NetYCE user account. The username and password of this account will be
used to login to the device. When available, the Device password value will be used as the
password instead of the login password of the account. This NetYCE account will be used as the
first set of credentials to login to the device. The rme_user and local_user credentials will still
be attempted should login fail.

File transfer

file_get

Transfer a file TO the named node. The transfer uses SFTP or TFTP depending on the available
support from the vendor and the connectivity available.

Mandatory options:

 -n node hostname of the node
 -s source location and name of the existing file on the NetYCE
system
 -t target location and name of the new file on the node

Optional options:

 [-c <connect>] use 'console', 'api' or 'management' connection
 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node
 [-v <vendor>] overrides the vendor type of the node

file_put

Transfer a file TO the NetYCE system. The transfer uses SFTP or TFTP depending on the available
support from the vendor and the connectivity available.

2025/10/19 09:36 9/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

Mandatory options:

 -n node hostname of the node
 -s source location and name of the existing file on the node
 -t target location and name of the new file on the NetYCE
system

Optional options:

 [-c <connect>] use 'console', 'api' or 'management' connection
 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node
 [-v <vendor>] overrides the vendor type of the node
 [-u <operator>] use NetYCE <operator> credentials for first attempt
to logon to the device.

The -u option refers to a NetYCE user account. The username and password of this account will be
used to login to the device. When available, the Device password value will be used as the
password instead of the login password of the account. This NetYCE account will be used as the
first set of credentials to login to the device. The rme_user and local_user credentials will still
be attempted should login fail.

OS Upgrades

Also see page on OS-repo scenario calls

os_files

retrieves a list of os files from the OS repository. Returns an error if no os files are found for these
criteria.

Optional options:

 [-n <name>] the name of the os image",
 [-v <vendor>] the vendor type of the os image",
 [-s <status>] the status of the os image (production, historic,
planned, unknown; default is production)",
 [-t <device_type>] the device type of the os image",
 [-f <version>] the version of the os image",
 [-d <domain>] the node type of the os image",
 [-y <node_type>] overrides the node type of the os image",
 [-o <file_type>] the file type of the os files: (os-image, boot-
image, license, other, unknown; default is os-image)",

os_image_select

https://wiki.netyce.com/doku.php?id=guides:user:scenario_calls

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

retrieve os repo image data. The returned hash variable has the following attributes: Id, Error,
Status, Vendor_type, Device_type, Os_name, Os_version, Os_path, Domain, Node_type,
Pre_activation_cmd, Post_activation_cmd.

If the options result multiple os images, the image with status production will be returned. If there
are more than that, the one with the latest timestamp will be returned. If you want to guarantee
that no more than one os image will be selected, then provide a filter for vendor type and device
type, since only one os image in production status can exist for each vendor type/device type
combination,

Optional options:

 [-n <name>] the name of the os image
 [-v <vendor>] the vendor type of the os image
 [-s <status>] the status of the os image (production, historic,
planned, unknown; default is production)
 [-t <device_type>] the device type of the os image
 [-f <version>] the version of the os image
 [-d <domain>] the domain of the os image
 [-y <node_type>] the node type of the os image

os_file_select

retrieve the files of an os repo image as a list of hash variables. Each hash variable has the
following attributes: Os_file_name, Vendor_type, Type, Status, File_size, File_date, File_md5,
File_crc, Storage_min

If the options result multiple os files, the one with the newest timestamp will be returned.

Optional options:

 [-i <id>] the os image id the files belong to
 [-v <vendor_type>] the vendor type of the file
 [-n <name>] the name of the file
 [-t <type>] the file type of the file (os-image, boot-image,
license, other, unknown). Default is os-image

DNS

dns_add_host

This command is available only with the Infoblox integration operational.

Optional options:

 [-n <node>] hostname of the node to add to DNS.
 Mandatory if '-f' is not used

2025/10/19 09:36 11/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

 Do not use the fqdn here.
 [-f <fqdn>] the full qualified host name.
 Mandatory if '-n' is not used.
 Overrides any associated with '-n'.
 [-a <ipv4>] the ipv4-address of the DNS record. Overrides any
associated with '-n'.
 The ipv4-address must include a /prefix in the
format 'address/prefix'.
 Use a /32 prefix to bypass the subnet-size
check.
 [-6 <ipv6> an optional ipv6-address for 'host' records only.
Cannot be used without an ipv4 address.
 The ipv6-address must include a /prefix. Use
prefix /128 to bypass subnet-size test.
 [-t <type>] dns record type: 'host' or 'arec'.
 Default to 'host'.
 [-v <ipam_view>] specify the Infoblox IPAM-view. The default is
configured in 'etc/<server>_dhcp.conf'
 which is normally 'Default'.
 [-d <dns_view>] specify the Infoblox DNS-view. The default is
configured in 'etc/<server>_dhcp.conf'
 which is normally 'Intern'. The DNS-view is
hierarchically dependent on the IPAM-view
 [-r] flag to renew the existing ip-address of the DNS
record.
 Requires the '-a' option to provide the new
address
 [-i <string>] information string added to the DNS record.

The dns_add_host will create by default a DNS 'host' record for the node using its management
ip-address. If the node exists in the YCE database, only the -n option is needed:

dns_add_host -n <node>

If the node is present in the CMDB table, the fqdn is retrieved from this table, but the ip-address
must be included explicitly using the -a since it obviously cannot be resolved using the DNS.

 # requires subnet '10.1.2.16/29' to exist in IPAM
 dns_add_host -n <node> -a 10.1.2.17/29

It is mandatory to specify the ip-address with its subnet's prefix (1-32). The DNS policies in place
require the IPAM subnet to exist or adding a DNS a-record or host is not permitted.

The only exception to this policy is where a /32 (single address) subnet is targeted. In that case,
the address is tested to exist and is available (unused), but the subnets prefix needs not to be
explicitly known.

 # only requires the address to exist in IPAM, but subnet-size is ignored
 dns_add_host -n <node> -a 10.1.2.17/32

The '-n' option can be replaced with the -f option to specify the full-qualified-domain-name (fqdn).

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

 # create the DNS host using the fqdn
 dns_add_host -f new-host.my.domain -a 10.1.2.17/29

If the fqdn is available in the YCE database, the management address of the node is located and
used, but otherwise the address option is needed too. The -f option allows a different domain
name to used than registered in the YCE database.

Policies demand that a domain name must pre-exist as a 'zone' in the IPAM or the request will be
denied. This applies to the explicit domains given in the -f option, but also the implicit domains
used with the -n option.

By default a 'host' type record will be created. Setting the -t option with the value 'arec' will
create an A-record instead. The -t can be either 'host' or 'arec'. Both record types are checked
when adding a new record to verify it does not already exist. The ERROR flag is set when either
exists or when any of the many criteria and policies are not met.

The Infoblox environment requires the use of IPAM-views and DNS-views. The DNS-views are
associated with the IPAM-views. Both views have defaults assigned in the
'etc/<server>_dhcp.conf' configuration file. Use the -v and -d options to override these defaults.

When creating a host, the fqdn must be unique and not exist, the domain-name must exist in
the DNS-view, and the subnet must exist in the IPAM-view. A 'host' record must have at least
one ipv4-address assigned, regardless of any ipv6-addresses. The ipv4 address and ipv6
address must reside in the same IPAM-view.

remove a host from the IPAM-view 'Internet' using the DNS-view
'Exposed'
dns_clear_host -n <node> -f "foo.acme.com" -t host -v Internet -d Exposed

add a host to the IPAM-view 'Internet' using the DNS-view 'Exposed'
dns_add_host -n <node> -f "foo.acme.com" -t host -a 172.122.34.20/24 -6
1a04:bc8:3001::20/120 -v Internet -d Exposed

Note: currently the ipv6 support is limited to 'host' records. An extension to support AAAA-
records is planned.

For additional details, see the article on “Add_host” in Infoblox DNS API plugin. It is this API call
that will be executed when using the dns_add_host command.

These are the four new DNS commands and rely on the NetYCE - Infoblox integration. Please
note that in these early-release DNS commands there is no support for the Infoblox Extended
Attributes.

dns_clear_host

Remove DNS host. This command is available only with the Infoblox integration operational.

Optional options:

https://wiki.netyce.com/doku.php?id=guides:reference:infoblox:plugin_infoblox_dns#add_host

2025/10/19 09:36 13/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

 [-n <node>] hostname of the node to add to DNS.
 Mandatory if '-f' is not used
 Do not use the fqdn here.
 [-f <fqdn>] the full qualified host name.
 Mandatory if '-n' is not used.
 Overrides any associated with '-n'.
 [-t <type>] host or arec, overrides default host type record
 [-v <ipam_view>] specify the Infoblox IPAM-view. The default is
configured in 'etc/<server>_dhcp.conf'
 which is normally 'Default'.
 [-d <dns_view>] specify the Infoblox DNS-view. The default is
configured in 'etc/<server>_dhcp.conf'
 which is normally 'Intern'. The DNS-view is
hierarchically dependent on the IPAM-view
 [-c] also remove cnames

dns_add_alias

Add DNS alias.
This command is available only with the Infoblox integration operational. Edit the configuration file
/opt/yce/etc/<servername>_dhcp.conf to define GridMaster, policies and defaults.

Use the type ('-t') 'alias' to add an alias to a 'Host'-record or the type 'cname' to create a 'Cname'-
record to point to a canonical host or a-record.

The use of the '-n' option implies the node name must exist in the YCE or CMDB environments of
NetYCE. Otherwise the '-f' option should be used to provide the full-qualified-domain-name by
which the host or canonical a-record record can be located in Infoblox. The node or fqdn cannot be
ipv4 or ipv6 addresses.

Aliases should be included as a fqdn. However, should it look like a hostname, and a host domain
is available, the alias will be extended with use the host domain to find it. Multiple aliases may be
specified in one call.

Options:

 -n <node> the hostname of the node in question, either the
hostname or the fqdn is required
 -f <fqdn> the the fqdn of the node in question, either the
hostname or the fqdn is required
 -a <alias> alias name(s) for <node> as fqdn or hostname (where
the <node> domain will be used)
 [-t <type>] 'alias' or 'cname', default is 'cname' type record
 [-d <dns_view>] specify the Infoblox DNS view name - default set in
etc/<server>_dhcp.conf
 [-i <info>] add a comment to the record
 [-e <ext_attr>] define an extended attributes (use "param=value"
format)

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

dns_clear_alias

Remove DNS alias.
This command is available only with the Infoblox integration operational. Edit the configuration file
/opt/yce/etc/<servername>_dhcp.conf to define GridMaster, policies and defaults.

The behaviour when removing an alias from a 'Host'-record is different from removing a 'Cname'-
record that points to a canonical host- or a-record.

When type ('-t') is 'alias', the aliases ('-a') will be removed from an existing 'Host'-record. The use
of node ('-n') or fqdn ('-f') option is then mandatory. The included aliases will only be removed if
they belong to that host record.

If the type is 'cname', the use of the node ('-n') or fqdn ('-f') is optional. When included, this
information is used to verify the canonical name matches the cname. If not, the cname is not
removed. Omitting the node and fqdn will result in removing the cname without verification.

The use of the '-n' option implies the node name must exist in the YCE or CMDB environments of
NetYCE. Otherwise the '-f' option should be used to provide the full-qualified-domain-name by
which the host or canonical a-record record can be located in Infoblox. The node or fqdn cannot be
ipv4 or ipv6 addresses.

Aliases should be included as a fqdn. However, should it look like a hostname, and a host domain
is available, the alias will be extended with use the host domain to find it. Multiple aliases may be
specified in one call.

Options:

 -n <node> the hostname of the canonical node, either the
hostname or the fqdn is required for host type
 -f <fqdn> the fqdn of the canonical node, either the hostname
or the fqdn is required for host type
 -a <alias> alias name(s) for <node> as fqdn or hostname (where
the <node> domain will be used)
 [-t <type>] 'alias' or 'cname', default is 'alias' type record
 [-d <dns_view>] specify the Infoblox DNS view name - default set in
etc/<server>_dhcp.conf

dns_clear_ip

This command is available only with the Infoblox integration operational.

The dns_clear_ip command will search the DNS for any Host or A-record referring to an ipv4-
address and remove it. Any CNAME records pointing to these removed records will be removed as
well.

Since an Infoblox Host construct can be associated with multiple ip-records, only the targeted ip-
address is removed. Should such a Host constrict at that point have no ip-addresses left, then the
entire Host is deleted. CNAMES pointing to Hosts constructs are preserved if ipv4-addresses
remain.

2025/10/19 09:36 15/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

Optional options:

[-a <ipv4>] the ipv4-address of the DNS records to search for and remove
(without prefix).
 Overrides -n and -f option.
[-n <node>] nodename of the node whose management ip-address is to be
removed.
 Do not use the fqdn here, the nodename is assumed to be a
known NetYCE object.
[-f <fqdn>] full qualified host name of a DNS record to be removed using
its resolved ip-address.
 Only the first ip-address that the DNS returns is searched
for.

By default, the DNS view searched is 'Intern' (as defined in the NetYCE 'DNS Infoblox API' plugin).

Examples:

dns_clear_ip -a 10.106.16.10
dns_clear_ip -n ams-cr01
dns_clear_ip -f server-1234.acme.com

External calls

The external calls is a group of traps, signals and other exec calls.

trap_nms

The trap_nms command sends a SNMP trap to the NMS management stations. The management
stations are specified using the -a option, one for each station.

The trap can include message details that require the -e option with the SNMP enterprise ID and a
-v with the variable OID (object-id). Then by including a -m option with a message, this message
gets assigned to the variable OID.

By including more -m messages, each is then assigned to the next OID by auto-incrementing the
last digit of the OID. The order of the -m's determine which OID is used. The default -v is '1.0'
which is used for the first -m, the second would then be 1.1 and so on. By defining your own -v
<varoid> you have full control over the object-identifier.

Example:

[scenario]
Description <node> trap-test

trap_nms -a 172.17.10.21 -a 172.17.10.28 -e 1006 -v 3.2.1 -m
"hostname:<hostname>" -m "domain:<domain>" -m "somevar:someval"

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

end

The traps sent will in this case include a 'varbindlist' with the following information:

{
 '1.3.6.1.4.1.1006.3.2.1' => 'hostname:ACME-GV-023',
 '1.3.6.1.4.1.1006.3.2.2' => 'domain:pub.acme.com'
 '1.3.6.1.4.1.1006.3.2.3' => 'somevar:someval',
},

Mandatory options:

 -a <nms_addr> send the trap to this address

Optional options:

 [-e <enterprise>] the enterprise OID to use (default 696)
 [-v <var_oid>] the variable OID to use (default 1.0)
 [-m <message>] the OID message text
 [-s <specific>] the specific trap type to use (default 0)

trap_node

The trap_node command sends a SNMP trap to the NMS management stations but 'spoofs' the
node as the originating address. The management stations are specified using the -a option, one
for each station.

The trap can include message details that require the -e option with the SNMP enterprise ID and a
-v with the variable OID (object-id). Then by including a -m option with a message, this message
gets assigned to the variable OID.

By including more -m messages, each is then assigned to the next OID by auto-incrementing the
last digit of the OID. The order of the -m's determine which OID is used. The default -v is '1.0'
which is used for the first -m, the second would then be 1.1 and so on. By defining your own -v
<varoid> you have full control over the object-identifier.

Example:

[scenario]
Description <node> trap-test

trap_node -n <node> -a 172.17.10.21 -e 1006 -v 3.2.1 -m
"hostname:<hostname>" -m "domain:<domain>" -m "somevar:someval"

end

The traps sent will in this case include a 'varbindlist' with the following information:

{

2025/10/19 09:36 17/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

 '1.3.6.1.4.1.1006.3.2.1' => 'hostname:ACME-GV-023',
 '1.3.6.1.4.1.1006.3.2.2' => 'domain:pub.acme.com'
 '1.3.6.1.4.1.1006.3.2.3' => 'somevar:someval',
},

Mandatory options:

 -n <node> hostname of the node
 -a <nms_addr> send the trap to this address

Optional options:

 [-e <enterprise>] the enterprise OID to use (default 696)
 [-v <var_oid>] the variable OID to use (default 1.0)
 [-m <message>] the OID message text
 [-s <specific>] the specific IOD to use (default 0)

signal_json

A RESTFUL JSON call can be added to the scenario using signal_json.

Mandatory options:

 -t <target> Define the target application (server and url)

Optional options:

 -p "variable=value" Provide variable-value pairs to include in Json
post
 -n <node> Provide the nodename
 -m <message> Provide the message you wish to include
 -a <action>] Provide the action value
 -s <status> Provide the status

This call is dependent on the configuration file /opt/yce/etc/signal_json.conf and can be
modified using the edit configs page under system. If the configuration file doesn't exists yet,
it will be created the first time the signal_json command is executed from a scenario.

This configuration file must be setup to define the various target applications. These targets
represent for example the ticketing system, the monitoring tool or the cmdb. Each of these targets
have attributes like: host, URL path and authentication details.

since these details may vary per NetYCE server, these targets have their attributes defined per
NetYCE hostname, or when they are identical to all servers, use the 'default'.

Example signal_json.conf file:

our $json_config = {
 'ticketing' => {
 'default' => {

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

 host => 'http://1.2.3.4:8080',
 url => '/api/v1/services',
 # provide for websevice basic authentication
 username => undef,
 password => undef,
 # provide for webservice bearer authentication
 webtoken => 'abcdef',
 },
 'genesis' => {
 host => 'http://1.2.3.4:8888',
 url => '/api/v1/services',
 # provide for websevice basic authentication
 username => 'my_username',
 password => 'my_passwd',
 # provide for webservice bearer authentication
 webtoken => undef,
 },
 },
 'cmdb' => {
 'default' => {
 host => 'http://11.12.13.14:8080',
 url => '/api/v1/services',
 # provide for websevice basic authentication
 username => undef,
 password => undef,
 # provide for webservice bearer authentication
 webtoken => 'abcdef',
 },
 },
};

The JSON dataset has a few pre-defined attributes (node, message, status, action) but can easily
be extended using the -p options. These -p options allow you to add any number of additional
attributes.

To allow nesting of attributes (called hashes), the parameter name in the -p option may be using
dots (.). These dots separate the key names used in the hash.

A simple example may clarify their use:

signal_json -t ticketing -n <node> -m "going down" -p "moo.one='one
value'" -p "moo.two=two value" -p moo.three="three value" -p
"moo.four.one = 'four value=none"

Results in:
 using Json config for target 'ticketing' and server 'default'
 #--- JSON ---
 {
 "jobid" : "0619_0031",
 "target" : "ticketing",
 "action" : "",

http://perldoc.perl.org/functions/undef.html
http://perldoc.perl.org/functions/undef.html
http://perldoc.perl.org/functions/undef.html
http://perldoc.perl.org/functions/undef.html
http://perldoc.perl.org/functions/undef.html

2025/10/19 09:36 19/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

 "status" : "",
 "node" : "ASD-CR02001",
 "message" : "going down",
 "moo" : {
 "three" : "three value",
 "one" : "one value",
 "two" : "two value",
 "four" : {
 "one" : "four value=none"
 }
 }
}
 Submit to webservice: http://1.2.3.4:8080/api/v1/services

st_exec

ST_EXEC allows the job to execute a Service-type from the scenario. Traditionally, changes are
first prepared before scheduling a job. The preparation might include using Service-types to
automate it. But in some cases the sequence of events must be reversed (e.g. deleting an object
from the database before removing it from the network), or the choice and parameterization of the
Service-type is dictated by the job/scenario status.

Any Service-type can be used with 'st_exec' provided the operator has sufficient permissions for
the Client_type, or the call will be rejected at run-time.

If the Service-type uses API 'custom' variables, these MUST be included using '-p “var=value”'
options or the call will be rejected at run-time. The logs, list the located custom vars of the
Service-type, and any missing will be logged in the error message.

[-b <client_type>] client_type of Service-type to execute. Overrides
client_type of node
[-c <service_class>] service_class of Service-type to execute.
Overrides service_class of node
[-s <service_type>] service_type of Service-type to execute.
Overrides service_type of node
 -t <service_task> mandatory service_task of Service_type to execute

[-n <node>] optional nodename (YCE nodes only) to provide the
-b, -c, -s options.
 Also sets 'current' service, client and node
[-a <ipv4_subnet>] optional ipv4 subnet/prefix in service-key or
global ipv4-subnet-id.
 Sets 'current' subnet. Requires -n, excludes -6
[-6 <ipv6_subnet>] optional ipv6 subnet/prefix in service-key or
global ipv6_subnet-id.
 Sets 'current' subnet. Requires -n, excludes -a

[-p <parameter=value>] define Service-type 'custom' parameters.
Mandatory for every custom used

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

 in Service-type. Use multiple '-p'

The simplest call uses only the '-n node' and '-t service_task' options. By including the '-n node' the
st_exec will use the client_type, service_class and service_type from the service the node is
located in. If any of -b, -c or -s is specified, it will overrule the values found for the node.

[scenario]
Description <node> Add_vpn by ST

st_exec -n <node> -t "Add_vpn"
if <error>
 log -m "st_exec failed"
 stop
endif

Service-types using 'current'

When including the '-n node', some of the service-type commands that match on 'CURRENT' -
representing the selected object in the GUI - will be set. The 'current' values for the service, client,
site, and node are thus defined and allow the Service-type to be executed despite the lack of a GUI
selection.

Note however, that 'current' subnet, ipv6-net or dhcp objects are not available by setting -n alone.
Add the '-a ipv4net/prefix' or '-6 ipv6net/prefix' to 'select' the current subnet if the Service-type
requires it. The subnet will be searched for using the service-key of the node. If the -a or -6 value
is the ipv4/ipv6 subnet-id, then this subnet will be recognized as the 'current' subnet. The -a and -6
options can only be used with the -n.

API Service-types

A Service-type may also be fully specified by including the -b, -c -s, and -t options. This form is
commonly used to execute API based Service-types. Since they usually require custom variables,
these variables must be included using -p options. Before execution of the Service-type, all
customs are located and logged. If -p variables are missing, the st_exec will not start and produces
an error.

The example below shows the -p options one separate lines following the st_exec call. This is a
supported format and is used to improve readability. Options are automatically joined if the first
part of the line is a recognizable option ('-a ', '-6 '). Comments cannot be included.

[scenario]
Description Add_dmz_frw to LB

st_exec -b 'DC' -c 'LB' -s "api" -t "Add_dmz_frw"
 -p "frw_name = DC2-FW01"
 -p "lb_name = DC2-LB02"
 -p "pe_a_name = DC2-PE01"
 -p "pe_b_name = DC2-PE02"
 -p "vrf_id = 100"
 -p "vrf_template = dmz_vrf"

2025/10/19 09:36 21/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

if <error>
 log -m "st_exec failed"
 stop
endif

It is allowed and sometimes useful to include a '-n node' option even when all four Service-task
specifying options are explicitly set. In this case the node will provide the 'CURRENT' values for
this node to be used in the Service-type. Of course, the use cases for this setup are very limited.

ansible_exec

This calls upon the local ansible installation. It allows the launching of either an existing Playbook,
or the launching of a NetYCE Scenariobook by Ansible. Where the Playbook option refers to a pre-
existing playbook-file that can be used as-is, the Scenariobook refers to the NetYCE template-
based generated Playbook that can be parameterised using the NetYCE modelling and database.

Optional options:

 [-n <node>] the node in question
 [-p <playbook.yml>] Use pre-existing Playbook YML file - include
full path
 [-s <scenariobook>] Use playbook created in a NetYCE job
 [-o "-vvvv"] Use ansible options -
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html"

Example, static yaml file:

ansible_exec -n <node> -p /opt/update_ntp.yml

Example, dynamic yaml file, which is generated by NetYCE:

config_create -n <node> -t update_ntp -f update_ntp.yml
ansible_exec -n <node> -s update_ntp.yml

script_exec

This calls upon a local script. Additional arguments can be provided to the script and if needed the
interpreter can be overridden.

Optional options:

 -s script Script to execute - full path may be included
 [-i <interpreter>] Override interpreter to execute the script
 [-o <arguments>] The script arguments. multiple are allowed
 [-t <timeout>] The timeout in seconds before forcibly killing the
script. defaults to 300

Example, of the python script execution:

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

<output> := script_exec -i /usr/bin/python2.6 -s
/opt/scripts/some_script.py -o variable1 -o variable2
<output> := script_exec -s /opt/scripts/some_script.py -o variable1 -o
variable2 -t 120

List Operations

calc

Executes the given calculation

Mandatory options:

 -c <calculation> string containing the calculation, may be a variable

Example:

<valA> := 5
<newVal> := calc -c '5 + <valA>'

Output in the job log:
Assignment: (valA -- result: (5))
Assignment: (newVal -- result: (10))

relation

Extract a variable (list) from a named relation, and returns this to a list variable. More information
on relations.

Mandatory options:

 -n <node> hostname of the node
 -r <relation> name of the relation (context)
 -v <column> the name of the relation column (variable) returned.

Optional options:

 [-p <parameter=value>] provide additional relation variable=value
pairs
 [-f <column=value>] define filter column=value pairs. The value
supports wildcards ('*' and '?')
 the relation row must match all filters to
be included in the result
 [-l <limit>] return the <limit> number of entries. The
limit must be > 0

https://wiki.netyce.com/doku.php?id=menu:build:relations:relation_edit

2025/10/19 09:36 23/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

Example:

Using variable: <Cpe_hostname>

 <CPE_Vrf_id> := relation -n <Cpe_hostname> -r Node_vrf -v Vrf_id -p
"Hostname=<Cpe_hostname>"

replace

Replace searches for a specific string-value and replaces it with another string-value. The replace
value can be empty. The match string is non case-sensitive.

Mandatory options:

 -l <list> Provide the list value, it will use the first entry
 -c <match> The string that needs to match

Optional options:

 [-r <replace>] The match will be replace with this string
 [-a] Provide this to replace every match

Example:

<valA> := "abc"
<valB> := "def"
<newVal> := replace -l <valA> -c 'bc' -r <valB>

Output in the job log:
Assignment: (valA -- result: (abc))
Assignment: (valB -- result: (def))
Assignment: (newVal -- result: (adef))

sort

Takes one or more lists and sorts its elements ascending. Returns a list variable.

Mandatory options:

 -l <list> a list variable

Optional options:

 [-r] reverse sort
 [-n] sort the list numerically
 [-u] return unique elements

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

Example:

 <listA> += "1"
 <listA> += "2"
 <listA> += "3"

 <listB> += "3"
 <listB> += "5"
 <listB> += "2"
 <listB> += "4"
 # sort both lists numerically in reverse keeping only unique items
 <sorted> := sort -n -u -r -l <listA> -l <listB>
 <msg> = concat -s ", " -l <sorted>
 log -m "items: <msg>"
 # prints the log message:
 # 2019-03-14 11:43:35 items: 5, 4, 3, 2, 1

concat

Takes one or more lists and concatenates its values in a single string. Each value is separated by
the separator string specified with the '-s' option. Returns a list variable with a single string value.

Mandatory options:

 -s <separator> separator string, default to a space (' ')
 -l <list> a list variable

Example:

 <listA> += "1"
 <listA> += "2"
 <listA> += "3"

 <listB> += "one"
 <listB> += "two"
 <listB> += "three"
 <msg> = concat -s ", " -l <listA> -l <listB>
 log -m "items: <msg>"
 # prints the log message:
 # 2019-03-14 12:17:52 items: 1, 2, 3, one, two, three

like

The 'like' command was removed in version 7.1.1. This command is superseded by the 'grep'
command which supports both regex and wildcard formats for the condition.

2025/10/19 09:36 25/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

grep

Takes one or more lists and a condition, and runs that condition against a wildcard or a regex over
the list. Returns all matching elements as a list variable.

Mandatory options:

 -l <list> a list variable
 -c <condition> a wildcard string: "some*ing" or a regex string:
"/some.*ing/"

Other Options:

 [-u] returns unique entries in the result. Duplicates are
dropped, but only if the entries are really identical (case-sensitive).

NOTE: the difference for the regex. It requires the two '/' characters to mark the regex pattern
(/pattern/). It will be always be case sensitive unless the 'i' modifier is used after the last slash:
/pattern/i.

NOTE: Variables that were defined as [parameters] will be substituted with the '-c' argument. Run-
time variables will not, but can be as a condition directly.

<filter> := grep -l <list> -c "*<var>*" # will only work when <var> is
defined in the [parameter] section
<filter> := grep -l <list> -c <var> # will work with run-time variable
<var>

Example:

[parameters]

[scenario]

 Description <node> grep test

 # fill a list with relation entries
 # (must use += because each relation entry will copy this line in the
final task before the scenario starts)
 <net_names> += <net_name@vlans>

 # copy this list to another list
 <all_names> := <net_names>

 # append some entries to this list
 <all_names> += "eenie"
 <all_names> += "meenie"
 <all_names> += "mynie"
 <all_names> += "moo"

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

 # filter the entries ending in "nie" using REGEX
 <nie_names> := grep -l <all_names> -c "/.*nie$/"
 # or using wildcard:
 # <nie_names> := grep -l <all_names> -c "*nie"

 # and log them one by one
 foreach <name> in <nie_names>
 log -m nie_name: <name>
 endeach

 end

The last lines of the log shows only ‘eenie’, ‘meenie’ and ‘mynie’ are grepped. The -c “nie” would
have retrieved the same entries but might also have found ‘denied’.

match

Takes one or more lists and a condition, and runs that condition against a wildcard or a regex over
the list. Returns a list with the matching substring(s) of each element.

The behavior of 'match' is similar to the 'grep' function but with an essential difference: where
the 'grep' returns the actual element of the matching condition, the 'match' returns only the
matching string. In essence, the 'match' is a grep function and a substring function rolled into
one.

Mandatory options:

 -l <list> a list variable
 -c <condition> a wildcard string: "some*ing" or a regex string:
"/some.*ing/"

Other Options:

 [-u] returns unique entries in the result. Duplicates are
dropped, but only if the entries are really identical (case-sensitive).

As with 'grep', the 'match' supports both wildcard conditions and regex conditions.
The wildcard condition support the '*' and '?' characters to match multiple or single characters.
The wildcard condition uses a format like -c “va?ue*”. Wildcard conditions are case-insensitive.
The regex condition uses a format like -c “/val.ue.*/i”. The regular expression itself is
positioned between slashes ('/…/') and optional modifiers are appended after the last slash. The 'i'
modifier causes the matching to be case-insensitive.

Example:

This example illustrates the difference between the 'match' and the 'grep' functions. It uses the
wildcard format for the condition. Grep only returns if there is a full match on the entire string.
Match will get return the matched portion.

2025/10/19 09:36 27/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

[scenario]
Description test match function

<list1> := "the first element"
<list1> += "the second element"

<list2> := "The third one"
<list2> += "The last one"

<grepped> := grep -l <list1> -l <list2> -c "*first*"

foreach <entry> in <grepped>
 log -m "grep entry: <entry>"
endeach

<matched> := match -l <list1> -l <list2> -c "*first"

foreach <entry> in <matched>
 log -m "match entry: <entry>"
endeach

end

Results:

The grep entries:
 "the first element"

The matched entries
 "The first"

When using the regex condition a distinct feature can be used: multiple substring matches.
Regular expressions have the capability to 'mark' matched strings using '()' and refer to them by
position ($1, $2 and so on). The 'match' function allows you to use this feature to use these marks
in the condition regex and have these marked strings returned as a separate entry in the result.

When using these '()' markers, only those matches are returned. Without these markers the
matching part of the condition is returned as was the case in the example above.

Example:

The same dataset as above using the regex condition below:
<matched> := match -l <list1> -l <list2> -c "/the (.*) (.*)/i"

Results in the matched entries:
 "first"
 "element"
 "second"
 "element"
 "third"
 "one"

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

 "last"
 "one"

And, when adding the optional '-u' creates a sorted list of unique
values:
<matched> := match -l <list1> -l <list2> -c "/the (.*) (.*)/i" -u

 "element"
 "first"
 "last"
 "one"
 "second"
 "third"

NOTE: Variables that were defined as [parameters] will be substituted with the '-c' argument. Run-
time variables will not, but can be as a condition directly:

this will only work when <var> is defined in the [parameter] section or
is a parameter that is defined in de <node> context (standard template
variables).
<found> := match -l <list> -c "*<var>*"

this will work with run-time variable <var> that was defined in the
scenario section
<var> = "value*"
<found> := match -l <list> -c <var>

NOTE: Regular expressions support the use of 'shorthand' character groups. A commonly used
one is \s to define a whitespace (being space or tab). When using these in a condition, you have
to protect these backslashes with a backslash:

Using spaces:
<found> := match -l <list1> -l <list2> -c "/the (.*) (.*)/i"
Using \s:
<found> := match -l <list1> -l <list2> -c "/the\\s(.*)\\s(.*)$/i"

split

Takes list(s) and a regex or wildcard separator to split the element strings into more elements;
returns a list with the separated substring of each element.

Mandatory options:

 -l <list> the list variable in question; multiple -l allowed
 -c <separator> a wildcard separator string, 'var*ble' or a regex
string '/\svar(.*)\s/i'"

2025/10/19 09:36 29/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

Other Options:

 [-n <number>] limit number of returned elements
 [-u] return unique elements as a sorted list

Example:

 <family> := "father, mother, son, daughter"
 <family> += "grandpa, grandma,uncle , aunt"

 # one way using regex
 <members> = split -l <family> -c "/\s*,\s*/"

 # another using wildcards
 <members> = split -l <family> -c ", "

 # same, but with a result limit of 1.
 <members> = split -l <family> -c ", " -n 1

Misc

pingable

Test if node is pingable

Mandatory options:

 -n <node> hostname of the node

Optional options:

 [-a <address>] override the node address

reachable

test if node is reachable using ssh or telnet

Mandatory options:

 -n <node> hostname of the node

Optional options:

 [-a <address>] override the node address
 [-p <port_list>] override the default ports "22, 23"

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

hangup

Disconnect node connection(s).

Mandatory options:

 -n <node> hostname of the node

Optional options:

 [-c <connect>] use 'console', 'api' or 'management' connection

wait

Delay all actions for <time> seconds.

Mandatory options:

 -t <time> time in seconds

update_rev

Update database with active template revision.

Mandatory options:

 -n <node> hostname of the node

Database

shortest_path

Locate the devices that make up the shortest path between end points. Returns a variable list of
all nodes making up the path including the start and end points.

The shortest-path uses the topology (links between ports) of the nodes in the YCE database.
Tracing a path is therefore limited to YCE nodes and the accuracy of the topology.

For finding the shortest path the Dijkstra greedy algorithm is used. The model uses any kind of
topology between ports of different nodes as a valid path and takes into account the modelling of
the hierarchy in that uplink directions have a cost of '1', downlink directions a cost of '3' and
interconnections a cost of '2'. Thus resulting in a path where uplinks are preferred and core routes
are not circumvented.

The algorithm will find exactly one path that has the lowest cost even is there are multiple paths

2025/10/19 09:36 31/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

due to redundancy.

Mandatory options:

 -s <node-name> Starting YCE node name of path
 -e <node-name> Ending YCE node name of path

Optional:

 -a <avoid-string> String of ordered node-names defining links to
avoid using a higher cost
 -a [<avoid-list>] Converts the <avoid-list> variable in a separated
string

The '-a' option is intended to find an alternate, secondary path between the start and end nodes
once the primary shortest path was found. Using this option, the primary path is passed as an
argument in a second call to 'shortest_path' where it is used to increase the cost of the links along
this path. These higher costs will allow the algorithm to find an alternative path if it has a lower
cost.

<path_pri> := shortest_path -s "switch1" -e "switch2"

<path_sec> := shortest_path -s "switch1" -e "switch2" -a [<path_pri>]

The example shows the use of the special notation “-a [<path_pri>]” that is needed here. Where
the regular form (“-a <path_pri>”) to pass an option to a command takes only the FIRST element
of the variable, this form concatenates ALL elements of the variable into one string. The use of '[..]'
simplifies passing all elements separately using multiple '-a' options or having to convert the list
into a string.

When using the '-a' option, the nodes names must form an ordered path. Also when multiple '-a'
options are used, the resulting names are combined in a single path. Any '-a' value may be a
single node name or a separated string of node names where the separator may be a space, a
comma, a semicolon or a vertical bar. If a topology link exists between two neighbouring node
names, the cost of that link will be increased by 5.

Note that the increase in cost is unidirectional: the cost of a path in the opposite direction remains
unaffected and could therefore still be included in the resulting secondary path. In this and similar
cases where a specific link or direction is to be avoided as well, the given path can be extended by
including additional sets of nodes. Although not part of the primary path this will result in a higher
cost for the link between these two nodes in the given direction. This manipulation of costs can
also be used to find the primary path.

In the example below the primary and secondary paths must avoid the link between “switch1” and
“switch2” in either direction:

<path_pri> := shortest_path -s "switch1" -e "switch2" -a "switch3
switch4" -a "switch4 switch3"

<path_sec> := shortest_path -s "switch1" -e "switch2" -a [<path_pri>] -a
"switch3 switch4" -a "switch4 switch3"

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

db_query

Retrieve a variable(-list) from the database. Returns a variable list.

Mandatory options:

 -t <table> table to retrieve information from.
 -f <field> the field to put in the return variable
 -w '<where>' where-arguments (for example: 'ClientCode="1000"'

db_update

Set a value in the database using a sql statement.

Mandatory options:

 -t <table> table to retrieve information from.
 -p '<parameter=value>' parameters that need to be set
 -w '<where>' where-arguments (for example:
'ClientCode="1000"'

Make sure you put the entire part after -p and -w in quotes.

In case you wish to update Custom Attributes, the where would contain pipes ('|'). These would be
interpreted as conditionals and need to be escaped using a '\'. Example:

db_update -t Par_vals -p "Var_value=<Var_value>" -w
'Par_key="<ClientCode>\|<SiteCode>\|<Hostname>" AND Var_name="var_name"'

Logging

For the logging, as well as the scenario in general and templates, it is possible to show/use the job_id
using <jobid>.

log

Insert timestamped message in the log of the job.

Mandatory options:

 -m "<message>" a string of text, in between quotes.

2025/10/19 09:36 33/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

log_action

Add entry to action log.

Mandatory options:

 -n <node> hostname of the node

Optional options:

 [-a <action>] name the action type to list
 [-m "<message text>"] the message to log. Make sure you use quotes
around this variable.

send_email

Send email notification to the operator/group mail addresses, if known.

This behaviour can be adjusted using the send_email_to tweak.

Optional options:

 [-s <subject>] the email subject
 [-m <message_text>] the email message text
 [-t <mail to>] the email address to send email to.
 [-f <mail from>] the email address to send email from.
 [-a <attachment-file>] filename to include as csv attachment.
multiple -a are allowed
 [-r <custom-report>] custom report to include as csv attachment.
multiple -r are allowed

Multiple '-t <email-recipient>' options are allowed, as well as a single -t option with a (quoted) list
of email-addresses.

Example

See the entry below on csv_file

csv_file

Create csv file of list variable(s)

Mandatory options:

 -r <name> the csv file name to be created in the job
directory. Spaces and special characters are replaced with '_', and
'.csv' is added
 -v <var_name>' variable name with a list of values to form a

https://wiki.netyce.com/doku.php?id=guides:reference:lookup_tweaks#send_email_to

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

report column. add a '-v' for each column

Optional options:

 [-s <separator>] separator character or string between columns.
defaults to comma (',')
 [-d] change file format from unix (lf) to dos (crlf)

The generated csv report will be created in the job-directory named after the job-id
(/var/opt/yce/jobs/<job_id>) and will receive the .csv extension. This file will be displayed in the
pop-up window when viewing the job files. It includes a link to download the file.

Tip: The report file can be emailed directly from the job scenario to the operator by using the
send_email command by attaching the report file to the email (the '-a <file>' option was added
for this purpose).

Example

The example below uses data from the relation “vlans” to fill three list variables. The csv_report
then creates a report from this data using these variables. Note that the report inserts the variable
names as the csv-header using the casing as typed, in this case with a leading capital. Non-
existing variables or empty variables included in the report generate no error but are included as a
blank column.

The report name can include variables as well as is demonstrated. The -d option appends todays
date to the report name.

The same report is then created as a local csv-file using csv_file. The '-d' option now converts
the standard unix file into dos.

Finally the report is sent to the local 'yce' user using send_email. To demonstrate the send_email
attachment file handling two more files are attached. Here, the '.csv' and '.log' extensions are tried
to locate the report and log files in the job directory. But for other extensions the proper name
must be used.

[scenario]
Description <node> mail test

<net_names> += <net_name@vlans>
<net_vlans> += <vlan_id@vlans>
<net_addrs> += <net_address@vlans>

csv_report -r "<node>_nets" -v Net_names -v Net_vlans -v Net_addrs -v
Nope -d

csv_file -r "<node>_nets" -v Net_names -v Net_vlans -v Net_addrs -v Nope
-d

send_email -a "<node>_nets" -a "<jobid>" -a "<jobid>.tsk" -t
yce@genesis.netyce.org

2025/10/19 09:36 35/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

end

When executing the following logs were produced:

28-Function (csv_report -r "ASD-CR98001_nets" -v Net_names -v Net_vlans -
v Net_addrs -v Nope -d)
 saved report as 'ASD-CR98001_nets-20191217'
29-Function (csv_file -r "ASD-CR98001_nets" -v Net_names -v Net_vlans -v
Net_addrs -v Nope -d)
 saving report to '/var/opt/yce/jobs/1217_0053/ASD-CR98001_nets.csv'
30-Function (send_email -a "ASD-CR98001_nets" -a "1217_0053" -a
"1217_0053.tsk" -t yce@genesis.netyce.org)
 including 'ASD-CR98001_nets.csv' as attachment
 including '1217_0053.log' as attachment
 including '1217_0053.tsk' as attachment
 send_email: '' sent to 'yce@genesis.netyce.org'

csv_report

Create custom csv report of list variable(s)

Mandatory options:

 -r <name> the report name to be added to the custom reports
 -v <var_name>' variable name with a list of values to form a
report column. add a '-v' for each column

Optional options:

 [-s <separator>] separator character or string between columns.
defaults to comma (',')
 [-d] add the creation date to the report name
('_yyyymmdd')

The generated csv report will be added to the Operate - Reports - View reports menu
and is subject to the same cleanup and ageing process as the other reports. The report can be
retrieved using the 'fetch_report' API call and/or the download URL.

Example

See the section above on csv_file

Error handling

All scenario commands can set the 'error' flag if their execution is considered failed. When this flag
is set (an error occurred) it will normally have no effect. Only when the scenario checks for it can it
affect the further execution of the scenario. To stop the scenario execution and mark it 'ABORTED'
the stop command MUST be included.

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

When the scenario reaches the end command (that is always present at the bottom of the
scenario) the job status will be 'SUCCESSFUL' regardless of any errors it encountered. Therefore a
scenario that contains no error handling or a stop command will by definition be successful.

reachable -n <node>
if <error>
 log -m "node <node> is non-responding"
 stop
endif

cmd_exec -n <node> -f <node>.cmd -v
if <error>
 log -m "command failure"
 stop
endif

end

Since having to include explicit error checking for every command in a lengthy scenario can be
quite tedious, the default error behaviour can be modified to automatically ABORT the scenario at
the failing command. This is accomplished with the stop on-error command. The above could
then be simplified as:

stop on-error

reachable -n <node>

cmd_exec -n <node> -f <node>.cmd -v

end

Note that the automatic abort will ignore any error handling that is present in the scenario since
the scenario will stop before it reaches the next line with the 'if error' test.

At the point where the normal error handling by the scenario must be resumed the stop
default command can be inserted. This allows for explicit error handling where it is needed and
skip it where it might be implicit.

stop on-error

reachable -n <node>

stop default

cmd_exec -n <node> -f <node>.cmd -v
if <error>
 log -m "command failure"
 stop
endif

2025/10/19 09:36 37/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

end

Here documents

At times it is cumbersome having to create and define lots of trivial or very small templates. In
those cases the scenario command can support HERE DOCUMENTS. This name is a reference to
unix systems where multi-line input can be given for a command. In our case that input represents
the content of a template.

A here document uses the < < and a terminator string that is defined at the end of the command
line. The next line all the way up to the terminator string on a line by itself then forms the here
document that will be used as the template text.

An example using the scenario command cmd_exec.
The string EOT is used here as terminator (end-of-text), but any string is allowed.

description <node> here document test

cmd_exec -n <node> -f here.cmd <<EOT
!
 a sample command for hostname <node> of customer <ClientCode>
 another command for the node in <SiteCode>
 the full template syntax can be used in a here-document
 | condition | {template}
!
EOT

This example will create the command file 'here.cmd' with the content below and then will execute
these lines one-by-one on the node's cli:

!
a sample command for hostname AMS-DC99001 of customer ACME
another command for the node in AMS-DC99
the full template syntax can be used in a here-document
!

Please note that in the example above the cmd_exec was invoked with the option -f here.cmd.
An explicitly named output file is essential here since the generated cli commands from the here
document will be stored in this file.

The second example shows how a more complex command file can be created using a few
config_create commands, with and without the use of here documents. The idea is that the
command file is created bit-by-bit over the execution the scenario using command or config
parsing.

Since the default behaviour of the config_create command is to restart the config file on each
invocation, the -x ('extend') option must be included to append new configuration lines.

description <node> here document test

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

config_create -n <node> -f my.cnf <<EOT
#
 SOME COMMANDS FOR <node>
#
EOT

config_create -n <node> -f my.cnf -x -t clear_atm

config_create -n <node> -f my.cnf -x <<EOT
#
 SOME MORE COMMANDS FOR <node>
 {create_atm}
#
EOT

cmd_exec -n <node> -f my.cnf

In this case the finally resulting config file 'my.cnf' is then executed on the node.

Deprecated

These commands are still supported for backwards compatibility, but they are not meant to be used
in new scenarios. When upgrading to version 7.0.2, a conversion was executed whereby the old
commands and options were replaced with the new. Creating scenarios using the old commands is
still supported for the time being.

import_cfg

Execute command line-by line on cli of a NetYCE managed node.

Mandatory options:

 -n node hostname of the node
 -f cmd_file file containing the commands you want to execute

Optional options:

 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node

basic_import

Execute command line by line on cli of a node in the cmdb table - does not support templates.

2025/10/19 09:36 39/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

Mandatory options:

 -n node hostname of the node
 -f cmd_file file containing the commands you want to execute

Optional options:

 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node

gen_startup

Generate commands from template.

Mandatory options:

 -n node hostname of the node

Optional options:

 [-t <template>] overrides the default main-template of
the node
 [-p <parameter=value list>] define or overwrite parameters for use
in template
 [-i <interface-list>] generate the config(s) for the portnames
listed

write_startup

Upload full config file and make startup.

Mandatory options:

 -n node hostname of the node
 -f cfg_file file containing the config you want to upload

Optional options:

 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node

save_config

Save config on device and download to nccm.

Last update: 2024/07/03
12:31 menu:operate:scenarios:commands https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

https://wiki.netyce.com/ Printed on 2025/10/19 09:36

Mandatory options:

 -n node hostname of the node

Optional options:

 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node
 [-m <message>] adds a message to the nccm as the cause

diff_config

Fetch running config and compare to latest nccm config.

Mandatory options:

 -n node hostname of the node

Optional options:

 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node

reload

Restart the device.

Mandatory options:

 -n node hostname of the node

Optional options:

 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node

restore

Upload config from nccm and reload.

Mandatory options:

 -n node hostname of the node

2025/10/19 09:36 41/41 Scenario Commands

Technical documentation - https://wiki.netyce.com/

Optional options:

 [-a <address>] overrides the address of the node
 [-d <domain>] overrides the management domain of the node

LogAction

Add entry to action log.

Mandatory options:

 -n <node> hostname of the node

Optional options:

 [-a <action>] name the action type to list
 [-m <message text>] the message to log

trap

Send snmp trap from yce server to nms (“1.3.6.1.4.1.696.1.0 - 0”).

Mandatory options:

 -e <enterprise> the enterprise OID to use (default 696)
 -v <var_oid> the variable OID to use (default 1.0)
 -s <specific> the specific IOD to use (default 0)

Optional options:

 [-m <message text>] the trap message

From:
https://wiki.netyce.com/ - Technical documentation

Permanent link:
https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

Last update: 2024/07/03 12:31

https://wiki.netyce.com/
https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands

	Scenario Commands
	Commands
	cmd_exec
	Mandatory options:
	Optional options:

	cmd_exec_basic
	Mandatory options:
	Optional options:

	resched_job
	Mandatory options
	Optional

	Configs
	config_create
	Mandatory options:
	Optional options:

	config_startup
	Mandatory options:
	Optional options:

	config_save
	Mandatory options:
	Optional options:

	config_diff
	Mandatory options:
	Optional options:

	config_restore
	Mandatory options:
	Optional options:

	Parsing
	parse_cmd
	Mandatory options:

	Device
	reboot_node
	Mandatory options:
	Optional options:

	clear_console
	Mandatory options:
	Optional options:

	File transfer
	file_get
	Mandatory options:
	Optional options:

	file_put
	Mandatory options:
	Optional options:

	OS Upgrades
	os_files
	Optional options:

	os_image_select
	Optional options:

	os_file_select
	Optional options:

	DNS
	dns_add_host
	Optional options:

	dns_clear_host
	Optional options:

	dns_add_alias
	Options:

	dns_clear_alias
	Options:

	dns_clear_ip
	Optional options:

	External calls
	trap_nms
	Mandatory options:
	Optional options:

	trap_node
	Mandatory options:
	Optional options:

	signal_json
	Mandatory options:
	Optional options:

	st_exec
	Service-types using 'current'
	API Service-types

	ansible_exec
	Optional options:

	script_exec
	Optional options:

	List Operations
	calc
	Mandatory options:
	Example:

	relation
	Mandatory options:
	Optional options:
	Example:

	replace
	Mandatory options:
	Optional options:
	Example:

	sort
	Mandatory options:
	Optional options:
	Example:

	concat
	Mandatory options:
	Example:

	like
	grep
	Mandatory options:
	Other Options:
	Example:

	match
	Mandatory options:
	Other Options:
	Example:
	Example:

	split
	Mandatory options:
	Other Options:
	Example:

	Misc
	pingable
	Mandatory options:
	Optional options:

	reachable
	Mandatory options:
	Optional options:

	hangup
	Mandatory options:
	Optional options:

	wait
	Mandatory options:

	update_rev
	Mandatory options:

	Database
	shortest_path
	Mandatory options:
	Optional:

	db_query
	Mandatory options:

	db_update
	Mandatory options:

	Logging
	log
	Mandatory options:

	log_action
	Mandatory options:
	Optional options:

	send_email
	Optional options:
	Example

	csv_file
	Mandatory options:
	Optional options:
	Example

	csv_report
	Mandatory options:
	Optional options:
	Example

	Error handling
	Here documents
	Deprecated
	import_cfg
	Mandatory options:
	Optional options:

	basic_import
	Mandatory options:
	Optional options:

	gen_startup
	Mandatory options:
	Optional options:

	write_startup
	Mandatory options:
	Optional options:

	save_config
	Mandatory options:
	Optional options:

	diff_config
	Mandatory options:
	Optional options:

	reload
	Mandatory options:
	Optional options:

	restore
	Mandatory options:
	Optional options:

	LogAction
	Mandatory options:
	Optional options:

	trap
	Mandatory options:
	Optional options:

