2025/10/21 04:12 1/6 CSV API

CSV API

The NetYCE CSV APl is a tool to simplify the use of the API (application programming interface) for
Service-types. It acts as a “wrapper” to create and execute NetYCE Service-type API xml-calls calls
using simple CSV formatted requests.

The CSV API can only be used within the NetYCE front-end tool. It is therefore not a true API that can
be accessed externally, the NetYCE XML based API is intended for those purposes.

(]

It is feasible to extend the xml API with a function that will accept these CSV formatted lines in the
XML request and process them as this tool does. If requested, NetYCE will build this function for our
customers.

Setting up

Service-tasks

The CSV API requires some setup. To start with, it requires the service-types/tasks to exist in order to
execute them. And, these service-tasks need to be designed to accept the variable names that the
API call includes. It is a good idea to create service-tasks that are specifically created to be used using
the APl and are not accessible for generic use in the NetYCE GUI.

Also, the service-types and tasks that are created for generic (i.e. GUI) usage are normally designed
to execute a complete change or service, a single service-task that will do-it-all in one go.
Consequently these tasks can become quite lengthy. A Service-task consisting of over 40 service calls
is not uncommon.

That approach is not desirable for APl usage. It is better to create a couple of shorter, simpler service-
tasks, each performing a specific step in creating a service or executing a change. Combining these
shorter tasks in a sequence of API calls is quite the thing to do when using an API.

The principal reason for creating simple and short service-task is to simplify variable handling.
Executing an extensive task can require a lot of variables that need to be included in the one API call.
By splitting these up, each API service-task may need only a few, simplifying selecting the variables to
include in the call and making it more obvious where these variables are used in the service-task.

The CSV API is intended to work in such a set-up: A series of simple CSV lines, each calling on a rather
basic service-task that requires only a few variables.

CSV definitions

The CSV lines entered in the CSV API tool must directly map onto the service-task(s) it will execute.
Each CSV line will therefore consist of three parts:

1. The name of the CSV line-type.

Technical documentation - https://wiki.netyce.com/

Last update: 2024/07/03 12:31 menu:operate:apis:csv_api https://wiki.netyce.com/doku.php?id=menu:operate:apis:csv_api

2. The service-task identifier.
3. The list of variables this CSV line-type supports.

The CSV line type name tells the CSV API which set of variables it must expect to find in the CSV line,
and to what variable names these values must be assigned to. Some of these variables are
mandatory, others are optional and may be blank.

The service-task identifier consists of four parts: The Client _type, the Service class, the Service_type
and Service_task. All four fields must be present and the corresponding service-task should exist in
the NetYCE modelling. These are referred to by <PRE> in the CSV APl commands.

Following these identifier fields, the list of variable values are appended. The number of values and
what variable names they will be assigned depends on the CSV line-type and its definition. Although
fully customizable and extensible, a default set of line types is preconfigured.

When accessing the CSV API tool, the area where the CSV lines will be typed or pasted into, will list
the configured CSV line types along with a brief explanation.

Field Separators

The CSV API tool can autodetect the separator used (within that line). the supported field separators
are comma, tab, semicolon and the vertical bar symbols.

Values should NOT be quoted and white space around values will be automatically stripped. Values
are NOT case sensitive.

For maximum readability it is recommended to use the | as field separator insert a space on either
side.

Default CSV line types

The default preconfigured CSV line types include newClient, newSite, newSrv, addNode and some
others. These should give the user a basic idea of the kind of service-tasks suitable for the CSV API.

Preamble is included with ALL api-types
<PRE> = client type | service class | service type | service task
example: 'newClient | YCE | api | api | newclient | ESXi'

newClient
Add a (new) client to the network
newClient | <PRE> | client code | [client name]

H

newSite
Add a (new) site to a client
newSite | <PRE> | client code | site type | site code

newSrv
Create new service on location. Use specified service name or default
newSrv | <PRE> | client code | site code | [service name]

https://wiki.netyce.com/ Printed on 2025/10/21 04:12

2025/10/21 04:12 3/6 CSV API

addNode

Add node to service. Use service name to locate or create the service for
the new node

addNode | <PRE> | client code | site code | node type | node name |
[service name]

addCnet

Add custom subnet. Use node name to locate the service for this subnet
addCnet | <PRE> | node name | net name | net address | net prefix |
[vian id] | [vlan tpl] | [vrf name]

addSupernet
Add a supernet of a given ip-plan to the client
addSupernet | <PRE> | client code | ip supernet | ip plan | [dns _domain]

addNet

Add ip-plan-based subnet. use node name to locate the service for this
subnet

addNet | <PRE> | node name | net name | [vlan tpl] | [vrf_name]

addLink

Create topology link between two ports and reconfigure those

addLink | <PRE> | node nameA | port nameA | node nameB | port nameB |
[port shut] | [port speed] | [port mode] | [port chanA] | [port chanB]

serviceTask

Execute a service task with between 2 and 6 nodes as input

serviceTask | <PRE> | node nameA | node nameB | [node nameC] |
[node nameD] | [node nameE] | [node nameF]

Defining CSV line-types

The default CSV line types can easily be expanded to create CSV line types more specific to a network
design. The samples below may illustrate this:

addCPE

Create new IPVPN customer CPE including many custom vars

addCPE | <PRE> | Customer name | Customer site | [Srv_type] |

[PTSID service] | [RD] | [VRF name] | CPE hostname | CPE type | CPE template
| [CPE_port] | [DB id] | [Mpls_neighbor] | [Ring hostname] | [Ring port] |
[Ring vlan] | [VPN_id] | var

newRing

Start new "ring" between the PE's on the site, name it 'service name',
create link as start

newRing | <PRE> | client code | site code | service name | A ring port |
B ring port

ringInsert
ringInsert | <PRE> | client code | site code | Ring name | Ring node |

Technical documentation - https://wiki.netyce.com/

Last update: 2024/07/03 12:31

menu:operate:apis:csv_api https://wiki.netyce.com/doku.php?id=menu:operate:apis:csv_api

A node | B node | RtoA port | RtoB port

To add these line types, access the “Edit Configs” tool from the “Admin - System” menu and edit “YCE

CSV API” configuration file.

(2]

Scroll to the end of the file and add the following lines:

[newRing]

brief = Start new "ring" between the PE's on the site, name it
‘service name', create link as start

client code
site code
service name
A ring port
B ring port

[ringInsert]
client code
site code
Ring name
Ring node

A node

B node

RtoA port
RtoB port

[addCPE]

brief = Create new IPVPN customer CPE including many custom vars

Customer name
Customer site

Srv_type = opt

PTSID service
RD = opt

VRF _name = opt

CPE_hostname
CPE_type
CPE_template

CPE _port = opt

DB id = opt
Mpls neighbor
Ring hostname

Ring port = opt
Ring vlan = opt

VPN _id = opt

opt

opt
opt

Each line type definition starts with a section header where the line type name is set between square
brackets: [csv _name]

The next line includes a brief description of the line type. All subsequent lines define the variables

https://wiki.netyce.com/

Printed on 2025/10/21 04:12

2025/10/21 04:12 5/6 CSV API

that the line-type requires. By default the variable is mandatory, optional variable require the = opt
to be appended.

Mandatory variables demand a value to be present at run-time. A blank value will cause the CSV API
to issue an error message when parsing the CSV command lines.

Please see the article on Edit Configs how to use this tool.

Defining API Service-tasks

Although creating the API service tasks are straightforward, a few practical pointers and examples will
be very helpful for the frist-time user.

Since we aim to keep the API service tasks simple and short, they are likely to be reusable in a
number of situations. Therefore, it is recommended to group all API service tasks together in the same
service_class. We often use ap1i for this purpose. This service class can be created as part of any of
the Site_types or in a Site_type by itself, it makes no difference.

When API service-tasks are more specific to a Service _class, then it is wise NOT to use the generic
class 'api' but create it using the Service_class it belongs to. Nevertheless it is never a good idea to
use an existing Service_type name to store the API call: It will then become available in the Service-
details' 'add' form.

Be aware that the API service-tasks are specific to the Client_type. API service-tasks cannot be shared
across Client_types. The operators permissions for the Client_type also apply when executing the CSV
API.

(]

In the example above, the Service class api was created and used for two tasks. Both are using the
generic api Service_type and use the Service_task name matching the CSV line-type. Using the CSV
line type can be useful, but is not a dependency. These API tasks will be executed by the API, the CSV
API is just a wrapper assisting to create the actual API calls. The line type name is irrelevant to the
API.

The examples show two very, very basic tasks. The newClient executes just one service type call:
“ADD - CLIENT - CLIENT _CODE". And the newSite just two: “LOCATE - CLIENT - CLIENT_CODE” and
“ADD - SITE - SITE_CODE"

The really only notable thing here is how the variable names from the API call are being used in these
service type calls. The API variable name is entered in the Value field using round brackets or
parentheses, (and).

If this variable name is present and the API call its value will be used, otherwise the default value will
be assumed. It is mostly this use of variables from the API that sets these service-tasks apart from the
ordinary GUI versions.

The following example shows the service task addAccessNode. It shows one of many possible
implementations, all dependent on the architecture and modelling involved. In this case the

Node type and Node name are variables but the loopback address is lifted from an Ip-plan offering
the 'Loopback' subnet type.

Technical documentation - https://wiki.netyce.com/

https://wiki.netyce.com/doku.php?id=menu:admin:settings:edit_configs
https://wiki.netyce.com/lib/exe/detail.php?id=menu%3Aoperate%3Aapis%3Acsv_api&media=menu:operate:apis:csv_api_a.png

Last update: 2024/07/03 12:31 menu:operate:apis:csv_api https://wiki.netyce.com/doku.php?id=menu:operate:apis:csv_api

(]

From:
https://wiki.netyce.com/ - Technical documentation

Permanent link:
https://wiki.netyce.com/doku.php?id=menu:operate:apis:csv_api

Last update: 2024/07/03 12:31

https://wiki.netyce.com/ Printed on 2025/10/21 04:12

https://wiki.netyce.com/lib/exe/detail.php?id=menu%3Aoperate%3Aapis%3Acsv_api&media=menu:operate:apis:csv_api_b.png
https://wiki.netyce.com/
https://wiki.netyce.com/doku.php?id=menu:operate:apis:csv_api

	CSV API
	Setting up
	Service-tasks
	CSV definitions
	Field Separators
	Default CSV line types

	Defining CSV line-types
	Defining API Service-tasks

