2025/11/03 03:22 1/6 Policies

Policies

In this form you can create, test and manage compliance policies, rules and conditions. A policy is
tested on a node, to return either compliant or non compliant. A policy contains various vendor type
specific rules, each of these rules contains a string of conditions that together form a logic the rule
tests at. Only if all rules for the node's vendor type are compliant, is the policy compliant for this
node.

Policies

The policy grid:
(=]

You can create a new policy, edit an existing one and you can duplicate it. The copy will contain all of
the policy's rules, conditions and node groups. You can test a policy on a node to see whether the
logic works and search through all policies you have. You can delete, export and import them. You
can export single or multiple policies. The import function works both with exported files from netYCE
and HPNA.

A few caveats about importing from HPNA:

e a rule with a vendor type not supported by NetYCE will not work, a list of supported vendors can
be found here

e diagnostics rules are not supported. NetYCE's version of this are command rules, but they will
not support a conversion from diagnostic rules.

The grid on the right contains all node groups linked to this policy. All nodes belonging to these node
groups will be validated on compliance, unless the policy in question is disabled (you can see this on
the status-column of the policy grid). The scope can be either 'cmdb’, 'yce' or 'all', meaning where the
node groups should be evaluated from. For more details on node groups, see Node Groups.

Edit Policy

(=]

The options (Trap, Syslog, Email and REST API) presented under Signal type represent the available
actions to be undertaken upon the compliance result. This can be triggered in four different ways:

e From compliant to non-compliant

e From non-compliant to compliant

e From non-compliant to non-compliant
e From compliant to compliant

The most important option is whenever a node changes from compliant to non-compliant.

You can enable or disable a policy here with its checkbox Enabled. “Run compliance on config
change” means that whenever we detect a config change, the node will be scheduled for a

Technical documentation - https://wiki.netyce.com/


https://wiki.netyce.com/doku.php?id=guides:reference:vendors:supported_devices
https://wiki.netyce.com/doku.php?id=menu:inventory:node_groups:node_groups

Last update: 2024/07/03 12:31 menu:cmpl:policies https://wiki.netyce.com/doku.php?id=menu:cmpl:policies

compliance check. This is useful for nodes whose configs change once in a while. For nodes whose
config change constantly it is better to use scheduled policies. This is a work in progress and will be
released in future versions of netYCE.

Test Policy

(]

Policies can get quite complex, and testing them is difficult when you're working with live nodes and a
daemon that only runs periodically. This form is meant to give you a quick option to test whether your
policies do what they're supposed to do. You can select multiple rules (by not selecting any it just
takes all of them) belonging to this policy, enter a hostname and they will be evaluated. The debug-
check shows more detailed information that might help you in case there is a problem.

An important caveat is this: the form checks the policy on the config of the node that's saved in the
NCCM, it will not poll the node whatsoever. This means that for this to work, you do need to have an
NCCM config for the node in the database, otherwise this function will not work.

Rules

(]

Rules are vendor type bound: only for nodes with that vendor type will they be evaluated. There are
three types of rules: Configuration, Command and Multi-config.

e Configuration rules take a config or a part of the config (as signified by Rule_start and Rule_end)
and runs a number of conditions on it.

e Command rules take the output of a command on the node, and compares it to a number of
conditions. Future plans are also to parse these into variables using command parsing. This
feature is not yet available and will be in future netYCE releases.

e Multi-config rules compare the config to the config of one to three other nodes, to see if they
are equal. For more information, refer to the Compliance user guide

You can create, edit, duplicate and delete rules and search through them. A rule's conditions combine
together with a 'logic'. You can test whether this logic has a valid syntax and create a bunch of
conditions at the same time with the 'new logic' button, but more on that below, in the 'Conditions'
section.

Edit Rule

(]

In the rule edit form you define the part of the config you will check against. There are two ways to do
this: Search based on lines and Search based on config blocks.

When you search configs based on lines, the compliance will look for lines in the config that match
Rule start. When it finds one, it will mark the block starting with this line, until it encounters either a

https://wiki.netyce.com/ Printed on 2025/11/03 03:22


https://wiki.netyce.com/doku.php?id=guides:user:compliance:policies#multiconfig_compliance

2025/11/03 03:22 3/6 Policies

line that matches Rule end or the end of the config. If multiple blocks are found this way they will all
be checked for compliance. Regular expressions are also supported.

Sometimes though, it is hard to know for sure how a block will end. Or in cases like Juniper, where
blocks within blocks all contain the same characters. For this there is also the option to search based
on blocks. To explain config blocks: a config consists out of a number of text blocks. Think of a block
as follows:

block head
block body
block body

block body
!

Or:

block a
block b
block c
block d

Or even hierarchical:

block head
block body
block body
block body
subblock head
subblock body
subblock body
subblock body

block body
!

Rule start looks at these block heads, and returns all blocks where they match.

Some vendors, Juniper for instance, have complex hierarchical trees within their blocks. If you want to
match sub blocks, you can put down the first lines all the parent blocks, followed by the first line of
the sub block you want to match. For example a Rule start of:

block head
subblock head

For each parent block, you need one line. They need to be in order, and can also contain regular
expressions.

Do note that if no Rule start is provided, the whole config is taken. This goes both for when you search
based on blocks or on lines.

Also note that some vendors do not support splitting up the config in blocks. These will be searched
by lines by default.

Technical documentation - https://wiki.netyce.com/



Last update: 2024/07/03 12:31 menu:cmpl:policies https://wiki.netyce.com/doku.php?id=menu:cmpl:policies

Create Logic

Sometimes, you want to create complex rules that consist out of a lot of conditions, it might be
annoying to keep creating new conditions one at a time. The form create logic is a bit of a shortcut for
this use case: you can type in a valid string of condition logic and it will automatically create those
conditions for you when you submit. For more information on how condition logic works, refer to this
section.

(]

Command Rules

Command rules allow you to check the result of a command for compliance. The form is nearly
identical for normal rules, with the addition of a Command-field:

(]

This is the command that will be run on the server.

Like all rules, these are limited per vendor type, so in this example, this rule will only be checked for
HP C7 nodes.

Rule start and Rule end can be used to parse part of the reply. Since commands are easier to parse
than entire config, these values can be plain text, or contain regular expressions. When using both a
rule start and rule end, multiple blocks of text can be matched. Compliance will then be run on all
blocks separately, like with configuration rules.

When you finish editing a command rule, the nodes that are linked to it are automatically scheduled
for an nccm poll, following a compliance check. It will take the nccmd daemon a few minutes to get to
it, but its update process is automated.

Conditions

(=]

There are two types of conditions: Conditions that test a config block, and logic conditions that tie
everything together. Logic conditions can be either 'if' (‘then’, 'else'), 'and’, 'or' and '(* and ')' to group
things together. Together they form a logic string that needs to be valid for a rule to be compliant. A
rule won't work if the syntax of its conditions is invalid, you can use the 'test'-button at the rules-grid
to verify this.

Edit condition

(]

You can switch between condition types using the “This is a logical condition”-checkbox. Like policies,
conditions can also be enabled or disabled. A disabled condition will not be evaluated from a rule's

https://wiki.netyce.com/ Printed on 2025/11/03 03:22


https://wiki.netyce.com/doku.php?id=guides:user:compliance:policies#logic

2025/11/03 03:22 5/6 Policies

logic and compliance checks. Disabled conditions will also be greyed out in the conditions grid in the
main compliance form.

You can select different condition types, and this determines what text will be used for the condition:

e ConfigBlock: The config block as dictated by the Rule_start and Rule_end of the condition's
rule

ConfigText: The whole config

NodeModel: The node's node model, as retrieved from cli command output
SoftwareVersion: The node's software version, as retrieved from cli command output
Hostname: The node's hostname

This string of text will be compared to the condition's lines. There are four ways to compare:

e Must contain: For each condition line, the text needs to contain a line that matches it. Lines
don't have to match exactly, as long as the condition's line is part of it.

e Must not contain: There should be no instance of any condition line in the text.

e Must contain lines: For each condition line, there needs to be a line in the text that matches it
exactly

e Must contain exactly: The text should match each condition line, and there should be no
other lines present

Additionally you can specify if the lines should contain regex or not. If the field “Must not contain any
additional lines containing” is filled, the text will also be checked to see if there aren't any other
additional matches, beyond the lines that have already matched. Note that this can match multiple
lines, which will all be reported, up to 20 lines.

Conditions will by default be parsed without leading spaces on each line. If you want to be exact in
the amount of leading spaces that are required, you can check the “Include leading spaces”
checkbox.

Sometimes, you encounter lines in a config like this:

ip-addresses { 192.168.0.1 192.168.0.8 172.0.0.1 194.175.16.22 111.24.35.128
192.168.0.2 }

Where the ip addresses don't have a set order. F5 is an example of a vendor that can do this. For
those cases, you can check the “Words can be in arbitrary order”-checkbox. This will evaluate a line
against a condition, and it will not care about the order the different words (words here is defined by
anything separated by a space), as long as they're all there. Must contain conditions will also allow
additional words in a line. Must contain lines conditions will only match lines that contain no other
words.

You can also parse relations and variables. For example, a line:
hostname <node>

Will parse <node> as the node's hostname. Relations will also be parsed. For more information, refer
to the Relations reference.

Technical documentation - https://wiki.netyce.com/


https://wiki.netyce.com/doku.php?id=guides:reference:relations:relations#parameters

Last update: 2024/07/03 12:31 menu:cmpl:policies https://wiki.netyce.com/doku.php?id=menu:cmpl:policies

Test condition

(]

In order to help you test whether your condition is valid, there is the test form. You can access it by
the “test” button under the conditions grid.

The test form validates your condition against a config block that you provide, so it doesn't retrieve
any node data from the database. It's meant as a quick tool to check for typos. For a more extensive
test that uses actual node data, you can use the policy test form.

If the debug-checkbox is checked, the output will be a bit more detailed.

From:
https://wiki.netyce.com/ - Technical documentation

Permanent link:
https://wiki.netyce.com/doku.php?id=menu:cmpl:policies

Last update: 2024/07/03 12:31

https://wiki.netyce.com/ Printed on 2025/11/03 03:22


https://wiki.netyce.com/
https://wiki.netyce.com/doku.php?id=menu:cmpl:policies

	[Policies]
	Policies
	Policies
	Edit Policy
	Test Policy

	Rules
	Edit Rule
	Create Logic

	Command Rules
	Conditions
	Edit condition
	Test condition




