2025/10/19 12:31 1/12 Command Parsing Template Syntax

Command Parsing Template Syntax

Command parsing templates parse the result from a command to a node, and extract variables from
that output which are used in Scenarios.

The scenario command is parse_cmd.
A tool to assist in testing the command parser can be found at Parsing test

When referred to output in the examples, it is the same output you'll see when using the parsing
tester.

Text parsing syntax

The text parsing syntax is described below, followed by the table parsing syntax.

Each of the capabilities is described using examples.

Capabilities

e <variable> only parses single words

e <variable:> parses until it encounters a double space, tab or the end of line

e <variable:test> parses until it encounters the word “test”, surrounded by whitespace, or the
end of line otherwise.

e <variable:,> parses until it encounters a single character, which doesn't have to be surrounded
by whitespaces. (in this case the ‘comma’')

e <variable*> will put all text in a single variable

e [header] + all of the above

* %keys + all of the above

e indentation, dealing with multiple levels of indentation.

e |*| ignoring anything else on the line.

Variable extraction
A few examples on how to use this. Below is the output given for a Cisco Node with the command

show version.

Let's parse this output and extract the following information:

software version
hardware

Base mac address
serial number

X X % ¥

SW1#show version
Cisco IOS Software, C2960 Software (C2960-LANBASEK9-M), Version 15.0(2)SE4,
RELEASE SOFTWARE (fcl)

Technical documentation - https://wiki.netyce.com/

https://wiki.netyce.com/doku.php?id=menu:operate:scenarios:commands#parse_cmd
https://wiki.netyce.com/doku.php?id=menu:build:templates:parsing_test

Ii%sét47§$/%t3e:12_31 guides:user:command_parsing_templates https://wiki.netyce.com/doku.php?id=guides:user:command_parsing_templates

Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2013 by Cisco Systems, Inc.
Compiled Wed 26-Jun-13 02:49 by mnguyen

ROM: Bootstrap program is C2960 boot loader
BOOTLDR: C2960 Boot Loader (C2960-HBOOT-M) Version 12.2(25r)FX, RELEASE
SOFTWARE (fc4)

Switch uptime is 39 minutes
System returned to ROM by power-on
System image file is "flash:c2960-lanbasek9-mz.150-2.SE4.bin"

This product contains cryptographic features and is subject to United

cisco WS-C2960-24TT-L (PowerPC405) processor (revision BO) with 65536K bytes
of memory.

Processor board ID FOC1010X104

Last reset from power-on

1 Virtual Ethernet interface

24 FastEthernet interfaces

2 Gigabit Ethernet interfaces

The password-recovery mechanism is enabled.

64K bytes of flash-simulated non-volatile configuration memory.
Base ethernet MAC Address : 00:17:59:A7:51:80
Motherboard assembly number : 73-10390-03
Power supply part number : 341-0097-02
Motherboard serial number : FOC10093R12

Power supply serial number : AZS1007032H
Model revision number : BO

Motherboard revision number : BO

Model number : WS-C2960-24TT-L

System serial number : FO0C1010X104

Top Assembly Part Number : 800-27221-02

Top Assembly Revision Number : AO

Version ID : V02

CLEI Code Number : COM3LOOBRA

Hardware Board Revision Number : 0x01

Switch Ports Model SW Version SW Image

* 1 26 WS-C2960-24TT-L 15.0(2)SE4 C2960-LANBASEK9-M

Configuration register is OxF

The parsing template will look like:

https://wiki.netyce.com/ Printed on 2025/10/19 12:31

2025/10/19 12:31 3/12 Command Parsing Template Syntax

Cisco IOS Software, <tmpl> Software (<software>), Version <version:,>,
RELEASE SOFTWARE (fcl)

cisco <hardware> (<tmp2>) processor |*|

Base ethernet MAC Address : <basemac>

Motherboard serial number : <serial>

Normal text is an exact match on the command output. Some variables are temporary, which we will
not use, but can be variable depending on the hardware, like <tmpl> and <tmp2>. The version is
matched up till the comma and note that the command is also presented in the 'exact' match text as
well.

The output of the parsing is:

<basemac>: 00:17:59:A7:51:80
<hardware>: WS-C2960-24TT-L
<serial>: FOC10093R12
<software>: (C2960-LANBASEK9-M
<tmpl>: (2960

<tmp2>: PowerPC405

<version>: 15.0(2)SE4

If you would want to 'catch' a single word on a line, you could just put a single variable in the parsing
template:

<word>

Headers

Multiple blocks with the same text and variables. Here is how to break them up in sections:

This template parses command results like this:

Current Boot Variables:

#

#

kickstart variable = bootflash:/n6000-uk9-kickstart.7.0.7.N1.1.bin
system variable = bootflash:/n6000-uk9.7.0.7.N1.1.bin

Boot POAP Disabled

#

Boot Variables on next reload:

#

#

kickstart variable = bootflash:/n6000-uk9-kickstart.7.0.7.N1.1.bin
system variable = bootflash:/n6000-uk9.7.0.7.N1.1.bin

Boot POAP Disabled

#

To differentiate between current and future boot variables, headers are
specified.

Headers are denoted between []-brackets and their contents have to match a
line,

Technical documentation - https://wiki.netyce.com/

Ii%sét47g$/%t3e:12_31 guides:user:command_parsing_templates https://wiki.netyce.com/doku.php?id=guides:user:command_parsing_templates

including all its special characters.

#

In a scenario, you can now access the current boot system variable as
follows

(note that special characters ., :, [, 1, @, %, <, > are not needed to
avoid confusion with scenario syntax):

<Current Boot Variables.current boot system%boot variable>

[Current Boot Variables:]

kickstart variable = <current boot kickstart>

system variable = <current boot system>

Boot POAP <current boot poap enabled>

[Boot Variables on next reload:]

kickstart variable = <next boot kickstart>
system variable = <next boot system>

Boot POAP <next boot poap enabled>

With the output:

[Current Boot Variables]: | <current boot kickstart>: bootflash:/n6000-uk9-
kickstart.7.0.7.N1.1.bin | <current boot poap enabled>: Disabled |
<current boot system>: bootflash:/n6000-uk9.7.0.7.N1.1.bin

[Boot Variables on next reload]: | <next boot kickstart>: bootflash:/n6000-
uk9-kickstart.7.0.7.N1.1.bin | <next boot poap enabled>: Disabled |
<next boot system>: bootflash:/n6000-uk9.7.0.7.N1.1.bin

In this way, you can pick out the difference between the current boot variables, and the ones on next
reload. The line between the squared brackets is a header. When the config parser parses a config, it
looks out for blocks whose first line starts with this header. It only looks at the first line of this block,
and headers can be made more specific. We allow a lot of special characters for example: spaces,
colons, even newlines. All these need to be explicitly included.

Keys

Whenever you have multiple entries, like the example below has with interfaces, you will want to able
to loop over this data and extract the necessary. You'll have to assign a variable as 'key, so you can
extract variables based on that specific key. See below:

Show cdp all returns an output like this:

Ethernetl/1l is up

CDP is operationally disabled as interface is in fex-fabric mode
Refresh time is 60 seconds

Hold time is 180 seconds

Ethernetl/2 is up

CDP is operationally disabled as interface is in fex-fabric mode
Refresh time is 60 seconds

Hold time is 180 seconds

Ethernetl/3 is up

https://wiki.netyce.com/ Printed on 2025/10/19 12:31

2025/10/19 12:31 5/12 Command Parsing Template Syntax

H*

CDP is operationally disabled as interface is in fex-fabric mode
Refresh time is 60 seconds
Hold time is 180 seconds
Ethernetl/4 is up
CDP is operationally disabled as interface is in fex-fabric mode
Refresh time is 60 seconds
Hold time is 180 seconds
Ethernetl/5 is up
CDP enabled on interface
Refresh time is 60 seconds
Hold time is 180 seconds
Ethernetl/6 is down
CDP enabled on interface
Refresh time is 60 seconds
Hold time is 180 seconds
et cetera...

HoH R H H OH KR H OH OH R K HH R

To differentiate between interfaces we specify a key. If you do this, this
will override any []-header
in your results. In a scenario you can now call the result as follows:
<Ethernetl/1.if status%port variable>.
#
The amount of spaces in the indentation in this pattern don't matter,
as long as there is any kind of indentation.
<%interface> is <if status>

CDP <if cdp> on interface

Refresh time is <if refresh time> seconds

Hold time is <if hold time> seconds

Output:

[Ethernetl/1]: | <if hold time>: 180 | <if refresh time>: 60 | <if status>:
up | <interface>: Ethernetl/1

[Ethernetl/2]: | <if hold time>: 180 | <if refresh time>: 60 | <if status>:
up | <interface>: Ethernetl/2

[Ethernetl/3]: | <if hold time>: 180 | <if refresh time>: 60 | <if status>:
up | <interface>: Ethernetl/3

[Ethernetl/4]: | <if hold time>: 180 | <if refresh time>: 60 | <if status>:
up | <interface>: Ethernetl/4

[Ethernetl/5]: | <if cdp>: enabled | <if hold time>: 180 |

<if refresh time>: 60 | <if status>: up | <interface>: Ethernetl/5
[Ethernetl/6]: | <if cdp>: enabled | <if hold time>: 180 |

<if refresh time>: 60 | <if status>: down | <interface>: Ethernetl/6

Indentation

Multiple hierarchical indentation also will be parsed. The templates need to follow the exact same
indentation pattern and that will suffice.

Technical documentation - https://wiki.netyce.com/

Iigsét4l;§$/%t3e:12_31 guides:user:command_parsing_templates https://wiki.netyce.com/doku.php?id=guides:user:command_parsing_templates

#
Ethernetl/48 is up
Dedicated Interface
Belongs to Pol
Hardware: 1000/10000 Ethernet, address: 002a.6ac4.b457 (bia
002a.6ac4.b457)
Description: 2e int portchannell -trunk-
MTU 1500 bytes, BW 10000000 Kbit, DLY 10 usec
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA
Port mode is FabricPath
full-duplex, 10 Gb/s, media type is 10G
Beacon is turned off
Input flow-control is off, output flow-control is off
Rate mode is dedicated
Switchport monitor is off
EtherType is 0x8100
Last link flapped 3week(s) 6day(s)
Last clearing of "show interface" counters never
6 interface resets
30 seconds input rate 6944 bits/sec, 6 packets/sec
30 seconds output rate 120 bits/sec, 0 packets/sec
Load-Interval #2: 5 minute (300 seconds)
input rate 6.42 Kbps, 6 pps; output rate 160 bps, 0 pps
RX
15 unicast packets 26389404 multicast packets 1779 broadcast packets
26391200 input packets 2915102855 bytes
0 jumbo packets 0 storm suppression bytes
0 runts 0 giants 2 CRC 0 no buffer
2 input error 0 short frame 0 overrun 0 underrun 0 ignored
0 watchdog O bad etype drop 0 bad proto drop O if down drop
0 input with dribble © input discard
0 Rx pause
TX
20825 unicast packets 1015782 multicast packets 35 broadcast packets
1036642 output packets 249577269 bytes
0 jumbo packets
0 output error O collision O deferred 0 late collision
0 lost carrier O no carrier 0 babble 0 output discard
0 Tx pause

HOoHOH H OH OH R H OH H HH HOH H R HH OH H K HHHHHEHH K HHHHHR

<%interface> is <if status>
Dedicated Interface
Belongs to <if port channel>
Hardware: <if hardware:>
Description: <if description:>
MTU <if mtu:>
Port mode is <if port mode>
RX
<if unicast packets> unicast packets <if multicast packets> multicast

https://wiki.netyce.com/ Printed on 2025/10/19 12:31

2025/10/19 12:31

7/12

Command Parsing Template Syntax

packets <if broadcast packets> broadcast packets

X

<if unicast packets> unicast packets

<if multicast packets> multicast

packets <if broadcast packets> broadcast packets

Table parsing syntax

Capabilites

e [headers], can consist of multiple lines and must include all characters to form a perfect match

* |<lines>| for flexible tables

o %keys, to be able to identify unique entries

o <variable> only parses single words, can be used for capturing indentation

o <variable:> parses until 2 consecutive whitespaces or the end of line

o <variable:anchor> parses line up to and including anchor. This can also be any character,
aside from newlines or <>-carats

o /[ignoring the line.
e ~<lines> for fixed tables

o Any character matching % is appended to the key

o Any character matching 1 is appended to the first variable (excluding the key)
o Any character matching 2 is appended to the second variable

o ... etcetera
o Any character matching a is appended to the tenth variable

o Amy character matching b is appended to the eleventh variable
o ... etcetera
o Any character matching . is ignored

Flexible table

All table parsing templates start with a header, followed by a table syntax. Multiple headers and table
syntaxes can be provided, multiple headers can precede a table syntax, but only one table syntax
belongs to one header. An example:

Ethernet
Port

Interface
Ch #

Ethl/1
10G(D) 100
Ethl/2
10G(D) 100
Ethl/3
10G(D) 101
Ethl/4

Type Mode

eth fabric
eth fabric
eth fabric
eth fabric

up

up

up

up

none

none

none

none

Technical documentation - https://wiki.netyce.com/

Ii%sét47§$/%t3e:12_31 guides:user:command_parsing_templates https://wiki.netyce.com/doku.php?id=guides:user:command_parsing_templates

10G(D) 101

Ethl/5 602 eth access up none

1000(D) 1000

Ethl/6 999 eth trunk down SFP not inserted

10G(D) 1008

et cetera

#

There can be multiple tables, and each table can have headers of multiple
lines.

ALl these lines in a header can become one pattern header to recognize
which table

syntax is applicable.

#

A table can be parsed as follows: its syntax is enclosed in between |-
pipes.

What follows is a list of variables. These will parse the table result,
separated

by spaces.

<%variable> parses the key in this entry. So getting the vlan in a
scenario, you would need e.g. <Ethl/l.vlan%interfaces>

<variable> is a regular variable, no spaces.

<variable:> is a variable containing spaces. The parser only jumps to the
next variable in line after encountering two consecutive spaces.

Ethernet VLAN Type Mode Status Reason Speed
Port

Interface

Ch #

|<%interface> <vlan> <type> <mode> <status> <reason:> <speed>
<port_channel>|

Port-channel VLAN Type Mode Status Reason Speed
Protocol
Interface

https://wiki.netyce.com/ Printed on 2025/10/19 12:31

2025/10/19 12:31 9/12 Command Parsing Template Syntax

|<%interface> <vrf> <status> <address> <speed> <mtu>|

Interface Secondary VLAN(Type) Status Reason

|<%interface> <status> <description>|

Note how the # in the header in this case is not a comment, but part of the header. Headers have to
match exactly, and if a table syntax has two headers, either one can match.

Flexible table with indentation and ignoring lines

With this, most tables can be parsed, even some with a weird layout. The problem with this table is
that it has some rows that are just there for filler and aren't meant to be parsed. These can be
ignored.

Some tables have an unusual layout, and need a few workarounds to be
parsed correctly

For example the command show port-channel traffic returns something like
this:

ChanlId Port Rx-Ucst Tx-Ucst Rx-Mcst Tx-Mcst Rx-Bcst Tx-Bcst
B oo e e e e e e e e e e e eh e meme e meee emecee eeeoa-
1 Ethl/47 95.82% 99.76% 71.85% 97.78% 50.29% 98.07%
1 Eth1/48 4.17% 0.23% 28.14% 2.21% 49.70% 1.92%
B oo e e e e e e et e e eh e mmme e mmme emmmmee eeeeoa-
11 Eth2/1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
B o oo e e e e e e e e e e e eh e meee e memh emecee eeeoa-

1002 Ethl00/1/4 0.0 0.0 0.0
1002 Ethl0l/1/4 0.0% 0.0% 0.0%
#

Any table row which starts indented can be parsed correctly by labelling
the

first variable as a garbage-one (for example <x>), and the rest of the
line will parse correctly.

#

Also to avoid parsing the dashed lines, you can put two slashes before it
in the pattern.

This will tell the command parser to simply ignore that line if it runs
into it.

Technical documentation - https://wiki.netyce.com/

Last update:
2024/07/03 12:31

[ChanId Port Rx-Ucst Tx-Ucst Rx-Mcst Tx-Mcst Rx-Bcst Tx-Bcst

guides:user:command_parsing_templates https://wiki.netyce.com/doku.php?id=guides:user:command_parsing_templates

| <x> <%port channel> <port> <rx ucst> <tx ucst> <rx mcst> <tx mcst>
<rx_bcst> <tx _bcst>|

Fixed table

These kind of tables have a fixed starting point for each column. With could have 1 or multiple
whitespaces between them, depending on the information stored. For these type of tables the
following syntax is used:

This example gives a fixed header with a dynamic value for the total
number

of entries, this can be ignored by only using the single line header of
the table

#

Flags: * - Adjacencies learnt on non-active FHRP router
+ - Adjacencies synced via CFSoE

- Adjacencies Throttled for Glean

D - Static Adjacencies attached to down interface
#

IP ARP Table for context default

Total number of entries: 3

Address Age MAC Address Interface

192.168.60.1 00:17:01 0050.56c0.0002 Ethernet2/1

192.168.60.7 00:09:34 000c.29e0.6768 Ethernet2/1

192.168.60.50 00:04:40 5000.0003.0000 Ethernet2/1

#

#

#

#

[Address Age MAC Address Interface]

| <%address> <age> <mac> <int>|

Some tables cannot be parsed based on separation by spaces, for example:

Port Name Status Vlan Duplex Speed Type
% COCOCCOCCODCDOC0O0CC0CCCCCODCOO000CO00Co000000000000C0000000000000C00000000000 00
Ethl/1l le int portchannel connected 1 full 10G
10Gbase-SR

Ethl/2 2e int portchannel connected 1 full 10G
10Gbase-SR

Ethl/3 le int portchannel connected 1 full 10G
10Gbase-SR

Ethl/4 2e int portchannel connected 1 full 10G

https://wiki.netyce.com/ Printed on 2025/10/19 12:31

2025/10/19 12:31 11/12 Command Parsing Template Syntax

10Gbase-SR

Ethl/5 Member of Pol000, connected 602 full 1000
SFP-1000BAS

Ethl/6 Member of P0ol008, sfpAbsent trunk full 10G --
et cetera

#

#

Headers can be of multiple lines. They can also directly follow each

other.
What this means is that the same rules should apply to both of them when a
match is found.

Port Name Status Vlan Duplex Speed Type
----]

~<%interface> <if name> <if status> <if vlan> <if duplex> <if speed>

<if type>

96%%%%%%%%%%% . 111111111111111111.222222222.333333333.4444444 ,5555555.6666666
66666

o?

Command Scope

Our command parser can handle a lot of different syntaxes, but it won't be able to parse everything.
For example, if you want to parse the running configuration, we redirect you to the config parser.
There are a number of other patterns that the command parser will NOT be able to parse:

e Any table whose rows consist out of multiple lines. For example:

VLAN Name Status Ports
1 default active Pol1007, Pol008, P0l009,
Pol1010

Ethl/6, Ethl/7, Ethl/8,
Eth1l/9

Ethl/10, Ethl/11, Ethl/12

Ethl/13, Ethl/14, Ethl/15

e Any command that returns a very large string of text, combining any regular parseable text
together with tables. It will either be just parsing tables, or text, not both.
o You will probably want to split or filter that using filters on the command you're using on
the node itself.

Technical documentation - https://wiki.netyce.com/

https://wiki.netyce.com/doku.php?id=guides:reference:templates:parsing_templates

Ii%sét47g7o|/%t3e:12_31 guides:user:command_parsing_templates https://wiki.netyce.com/doku.php?id=guides:user:command_parsing_templates

From:
https://wiki.netyce.com/ - Technical documentation

Permanent link: Gy
https://wiki.netyce.com/doku.php?id=guides:user:command_parsing_templates - 231

Last update: 2024/07/03 12:31

https://wiki.netyce.com/ Printed on 2025/10/19 12:31

https://wiki.netyce.com/
https://wiki.netyce.com/doku.php?id=guides:user:command_parsing_templates

	[Command Parsing Template Syntax]
	[Command Parsing Template Syntax]
	Command Parsing Template Syntax
	Text parsing syntax
	Capabilities
	Variable extraction
	Headers
	Keys
	Indentation

	Table parsing syntax
	Capabilites
	Flexible table
	Flexible table with indentation and ignoring lines
	Fixed table

	Command Scope

