
2026/01/09 09:56 1/5 Template reference

Technical documentation - https://wiki.netyce.com/

Template reference

The templates form can only be opened when a client is selected in the Main Build operations section.
All the templates from that client type will be loaded.

The syntax for the templates is not checked for any errors. NetYCE is not an expert system. The
templates are made of the actual configurations for the nodes in a parametrized way. This means, the
configuration should be created by engineers who have intimate knowledge of the used devices and
their configurations.

Variables within a template

Variables are surrounded by '<' and '>', thus <variable>.

Comments within a template

It is possible to use comments within a template. This is done by using one of the following characters
for each line of comment:

#
!
−−
⁄⁄

Dependant on the text delimiter of the vendor (module), the line will be ignored or generated by the
configuration generator. Variables will be substituted and checked in a comment rule.

Example

The following template:

# Specific SNMP server configuration
snmp-server contact <Snmp_syscontact>
! SNMP server 1
snmp-server <Snmp_traphost1> <Snmp_trap_community>
! SNMP server 2
snmp-server <Snmp_traphost2> <Snmp_trap_community>

For vendor Cisco_ios it will result in:

snmp-server contact info@netyce.com
! SNMP server 1
snmp-server 192.168.1.42 public
! SNMP server 2
snmp-server 192.168.33.89 public

https://wiki.netyce.com/doku.php?id=menu:inventory:main:main


Last update: 2024/07/03
12:31 guides:reference:templates:templates https://wiki.netyce.com/doku.php?id=guides:reference:templates:templates

https://wiki.netyce.com/ Printed on 2026/01/09 09:56

For vendor Huawei_S it will result in:

# Specific SNMP server configuration
snmp-server contact info@netyce.com
snmp-server 192.168.1.42 public
snmp-server 192.168.33.89 public

Using a subtemplate within a template

Subtemplates are used within a template by using the template name between curly brackets { } like
the example:

# Next the first subtemplate will be loaded.
{SubTemplateName1}
# Now the second subtemplate will be loaded.
{SubTemplateName2}

This will be the actual output when the template will be generated:

These are the contents of the first subtemplate
!
These are the contents of the second subtemplate
!

Subtemplates can also be used within a subtemplate.

Main templates

Main templates are mostly used to assemble all the needed Sub templates. Main templates should
not contain any actual configuration. All main templates are linked to a specific Node class. Node
classes are defined with the Lookup form by defining a new Node type. Also a Main template must
have a hardware vendor and type.

Sub templates

Subtemplates can be used to group partial configurations, such as ACL's, SNMP etcetera.

Subtemplates can also be used from within a Subtemplate. This will result in the following example:

mainTemplate.txt

...
{managementSubtemp}
...

https://wiki.netyce.com/doku.php?id=menu:admin:settings:settings
https://en.wikipedia.org/wiki/Access_control_list
https://en.wikipedia.org/wiki/SNMP
https://en.wikipedia.org/wiki/Access_control_list
https://en.wikipedia.org/wiki/SNMP
https://wiki.netyce.com/doku.php?do=export_code&id=guides:reference:templates:templates&codeblock=5


2026/01/09 09:56 3/5 Template reference

Technical documentation - https://wiki.netyce.com/

The management subtemplate contains the following:

managementSubtemp.txt

#Subtemplate for all management related configuration
{snmpSub}
{sshSub}
{syslogSubt}

And the subtemplates snmpSub, sshSub and syslogSub will contain the actual configuration. Nested
subtemplates are limited.

Automation templates

Automation templates are available from the Sub templates tab. Automation templates are sorted
below the Sub templates.

Port templates

Port templates are used to configure ports. A port type must be entered and port templates can only
be assigned to ports to which the hardware type is a match. (i.e. A FastEthernet port can only be
assigned a FastEthernet port template)

Relations

Main article: Relations and named context

All the nodes within netYCE are created from a hierarchical model of objects. By using the relation
between these objects, very short templates can be created with a lot of information in them. This is
done with relations.

Directives

Port-templates can fully use any Relation to retrieve (lists of) variables. However, some Relationships
become port-specific by referencing <port_name>, <port_type> or any of the port-specific variables
in the SQL of the Relationship. In these cases it is absolutely necessary to force the YCE
configuration generator to re-query the Relationship for every port. Failing to do so causes the last
results to be reused - probably those of another port.

This behaviour is subject to YCE template directives, of which the #reload is the most used. YCE
directives must be the first word of the line and there may no whitespace between the hash (#) and
the directive itself. Most directives require one or more arguments. Directives cannot be used on the
same line as cli commands. Their arguments cannot be variables.

https://wiki.netyce.com/doku.php?do=export_code&id=guides:reference:templates:templates&codeblock=6
https://wiki.netyce.com/doku.php?id=guides:reference:templates:limitations
https://wiki.netyce.com/doku.php?id=guides:reference:templates:relations


Last update: 2024/07/03
12:31 guides:reference:templates:templates https://wiki.netyce.com/doku.php?id=guides:reference:templates:templates

https://wiki.netyce.com/ Printed on 2026/01/09 09:56

The #reload directive forces a Relation to be re-queried. Any previous results form the Relation are
deleted. The #reload directive must be present BEFORE retrieving the variables of that relationship in
the (port-) template.

The #reload directive attempts to load all arguments as Relations:

#reload port_connections vlans_attached

is equivalent to

#reload port_connections
#reload vlans_attached

The #load directive is similar to the #reload but does not delete the previous results.

The #use directive also queries a Relationship but immediately makes it the current context. The
relation name can be omitted for the duration of the #use. It takes only one Relation as argument.

Lastly, the #wait directive although it has nothing to do with Relationships. It is used to create a
momentary pause when executing commands on the command-line of a device. The sole argument to
the #wait directive is the number of seconds to pause. This number must be a positive real number
(e.g. 1 or 2.5, or 1.25).

When you execute a command which will take a while to process you'll want to wait a little while
before executing the next command (otherwise you risk the second command not being executed at
all), this can be accomplished using the directive “#wait n.n” which will wait n.n seconds on the CLI
before the next command will be executed, make sure to use this directive after executing the
command which will take a while to process.

The syntax is: “#wait n.n” everything after that will be ignored, spaces in front of the directive are
allowed:

#wait 1.5 - will wait 1.5 seconds.

  #wait 1.5 - will also wait 1.5 seconds.

# wait 1.5 - will be seen as a comment.

#wait 1,5  - will be interpreted as a "#wait 1" because of the comma has
been used instead of a point.

#wait          - will also be seen as a comment.
#wait a second - will also be seen as a comment.

#wait 10 let's wait for a while  - will wait for 10 seconds.

There is no restriction on a maximum period, “#wait 3600” can and will wait for an hour. “#wait 0.01”
also works. By default a waiting time of 0.2 seconds will be used between every command, issuing a
“#wait 0.1” will result in a waiting time of 0.3 seconds until the next command will be executed.

When a full configuration for a node gets compiled the #wait will be omitted (download file), only in



2026/01/09 09:56 5/5 Template reference

Technical documentation - https://wiki.netyce.com/

case of partial templates or commands the #wait will be passed on to the job.

Ports

Main templates posses ports. When creating a new node, these ports will be copied to the new nodes.
To manage a main template's ports, click on the “Switch Ports”-button in the main templates tab.

In the ports subform, ports can be added (+), removed ( ) and changed ( ). By clicking a single
port, the port will also be edited. By looping a lasso around multiple ports, all the selected ports can
be edited.

You can also add, edit and delete port slots. For now this only is used in order to specify the slot's port
layout.

The port layout syntax is as follows: the number of rows, followed by an H(orizontal) or V(Vertical). If
the port count should start at bottom-left (instead of top-left), include a U. If the port count should
start at the top-right (instead of top-left), include a B, then a dash (-), followed by the number of ports
that should be displayed per block. Example: 2V-12.

From:
https://wiki.netyce.com/ - Technical documentation

Permanent link:
https://wiki.netyce.com/doku.php?id=guides:reference:templates:templates

Last update: 2024/07/03 12:31

https://wiki.netyce.com/
https://wiki.netyce.com/doku.php?id=guides:reference:templates:templates

	[Template reference]
	[Template reference]
	Template reference
	Variables within a template
	Comments within a template
	Example

	Using a subtemplate within a template

	Main templates
	Sub templates
	Automation templates
	Port templates
	Relations
	Directives
	Ports



