2026/01/17 08:25 1/11 Relations and Contexts

Relations and Contexts

Contexts

Default Context

When generating the configuration for a networking device, a large number of parameters are
retrieved from the NetYCE database that are related to that node. These parameters are used in the
Templates that make up the configuration and are substituted during generation. For each node type,
the set of available parameters may vary. This set of parameters and their values we call the
Context of the node.

The Default Context is the standard context of the node for which the configuration is generated.

Named Context

Additional parameter sets reflecting specific relations in the network design can be defined by the
user with Modeling permissions. In order to create these relations between nodes and gain access to
the corresponding parameters, named contexts are defined. These relations are being stored as an
SQL query for which the corresponding parameters are retrieved.

A Named Context is the name by which the SQL query is being stored and is also the name of the
context. A named context is then being accessed as a temporary table that, in combination with a
parameter name results in one or multiple values.

The various named contexts become an extension of the default context from which the parameter
values can be accessed via the name of the context. A named context is defined only once as a
‘Relation’ by an YCE modeler in the form of an SQL statement and is accessible for all templates.

A configured named context or ‘relation’ is available for all templates, sub templates and
automations. There are no restrictions with regards to the number of named contexts that can be
configured or that are used in a template.

Current Context

The Current Context is always the Default Context of the node, but can be changed (temporary) under
the influence of the Template-directives to a Named Context.

Parameters in the current context are expressed in the following form: <param>. This will substitute
<param> in the template with the corresponding value. The substitution is executed exactly once
even if multiple values exist. In this case the first value of <param> is used.

In case that all values of <param> need to be substituted, <param@> can be used. This implicitly
refers to the current context. When substituting multiple values for a parameter exactly one line for
each parameter value will be generated.

Technical documentation - https://wiki.netyce.com/

Last update: 2024/07/03

12:31 guides:reference:templates:relations https://wiki.netyce.com/doku.php?id=guides:reference:templates:relations

The default context is in fact also a named context with the name of the node. For this reason the
creation of a named context with the name of the node is not recommended. The results will be
confusing.

Context Directives

Context directives (or pointers) are used in the template text and can influence the context behavior
while generating a configuration.

Load or reload a context

#load context

This forces the loading of a Named Context. Normally a named context is retrieved from the database
at the moment of its first reference. The #1load directive can force this occurrence. By doing so, the
dependencies between named contexts can be forestalled, as the SQL statements of a named context
can have parameters of another named context.

The context information is loaded in addition

#reload context

The #reload directive will be used primarily in port-templates. Contexts that are used in specific
interfaces, will usually refer to <port name> in their SQL definition. As these will change for each
port, a #reload of this context in the port-template is a requirement. If this would've been done
using a #load each <port name> would be added to the previous set of information.

The context information is clean (previous information is cleared)
The #1load and #reload directive can have multiple contexts as argument. These are then reloaded
in the order from left to right.

Use a named context

#use context

#use

The #use directive appoints a named context as the default context. This can be useful to be able to
use a sub-template for a different context than the current default was intended.

The use of these will be very sporadic since sub-templates with variable contexts are normally
invoked via the {subtemplate, context} syntax that automatically performs this context
exchange.

Without argument, the #use directive will restore the default context of the node.

Wait directive

#wait <float>

https://wiki.netyce.com/ Printed on 2026/01/17 08:25

2026/01/17 08:25 3/11 Relations and Contexts

A wait directive also exists to allow for additional waiting between commands. This is explained in
more detail at Templates.

Remarks

Context names, parameters and directives are not case sensitive.

De directives like #1oad and #use cannot be entered as # load or # use. Depending on the vendor
type, the developer can enter comment lines in the Templates using # as a leader string.
Consequently using # load some relation in Template will be evaluated as a comment, not a
directive.

Named Context definition

A named context is being stored under the ‘Relations’ form of the YCE client front-end as an SQL
query. This form is accessible via the Relations form:

]

Named contexts will most always contain a WHERE clause with a reference to <Hostname>,
<SiteCode>, <ClientCode> or <Domain> as this forms the relation with the context of a node.

Transformed Context

When creating a named context (relation) the SQL definition of the relation can be modified to
automatically create additional columns based on the values found in the SQL results.

This extension of columns is the result of transforming a field value from a selected column to a
column name. The value(s) in that column then points to another selected value from the record. In
that way, a result table in which every line describes a parameter, can be changed to a table in which
this parameter-name becomes a field-name. That field name then receives one of the field values that
belong to that parameter.

To extend the existing context to a Transformed context, a ‘Transform’ line is being added, preceding
the context SQL query. This Transform line has the syntax:

TRANSFORM parameter-veld WITH value-field
This transform-line is directly followed by the SELECT query of the context.

A transformed context makes it easier to use parameter names directly in a template. Example: The
reference to <Server address@Servers client:’'Dhcp _server’> will return the parameter
(colum name) Server address of the relation Servers client. Since the qualifier Dhcp server
is included, only the result rows where one of its values matches the string Dhcp server will be
included. Effectively substituting the server_address of the server named Dhcp_server.

Should a Transform be applied (using Transform Server name With Server address), the
same result can be retrieved with
<Dhcp server@Servers client>

Technical documentation - https://wiki.netyce.com/

https://wiki.netyce.com/doku.php?id=menu:build:templates:template_edit#directives

Last update: 2024/07/03

12:31 guides:reference:templates:relations https://wiki.netyce.com/doku.php?id=guides:reference:templates:relations

The transformed Server name column created new columns named after the server-names, each
with a value matching the server_address. The new column Dhcp_server has now has the value
of the Server address. The substitution will result in any server-address of the Dhcp server.

As the context is only extended with a number of new columns, both reference forms remain available
(and can also be combined)

It is not possible to transform more than one parameter.

Relation Test

As of version 5.0, it is possible to develop a relation more interactive. The web-tool ‘Relation Test’
allows the developer to evaluate the outcome of a query for a specific node. The transform syntax is
here being supported. It can be found in the Build - Relations menu section.

The Relation Test starts with selecting a node to examine the context results for a relation. By
selecting various nodes the results for a relation for each of these nodes can quickly be examined.

(]

The relations can be retrieved with the drop down ‘Relations’. After activation with the ‘View Context’
button is the SQL query being shown. Also is the query being processed for the selected node and
shown as a table.

(x]

Changes to the query can be added by editing the ‘Context Query’ field. By applying the ‘Evaluation’
button, this is being executed. In this way a context-query (or relation) can be changed iterative.

It’s not possible to save a changed query directly. To do this, the final query needs to be pasted back
in the Relations form of the YCE client.

Parameters

Current Context

Parameter substitution for the Current Context has two different forms

<param>

This substitutes the value <param> in the template line at the location mentioned. The context where
this parameter refers to is the Current Context, that without applying #use almost always is the
default context of the node. <Hostname> then refers to the name of the node for which the
configuration is being generated.

<param@>
This generates a configuration line for all values (also non-unique) for the parameter from the Current
Context. See also description of <param@context> mentioned below.

A reference to <param@> not only results in a configuration line for all values of param, but also

https://wiki.netyce.com/ Printed on 2026/01/17 08:25

2026/01/17 08:25 5/11 Relations and Contexts

forces <param> to be searched in the current context. In most cases this will be the default context of
the node, but with the ‘#use context’ directive, an arbitrary context can be made.

Named Context

The substitution of named contexts is different than for normal parameters.

A query of a named context often results in multiple records. Mostly, the relation between nodes
consists of multiple elements such as switches or routers on different locations, ports of a switch, SLA
measurements QoS parameters etc. In these cases a configuration line is preferred for all possible
values of the parameter in this context.

<param@context>

This substitutes the value of 'param' of the mentioned context (relation-name) in as many
configuration lines as there are records that have been retrieved with the named context. A template
line where multiple parameters from the same context are used, results in configuration lines
applying one record every time of the named context so the underlying relation is maintained.

Example:

Named Context: routers

Hostname Lan_address Lan_mask
switchl 100.216.80.23 255.255.254.0
switch2 100.21.100.134 255.255.254.0
switch3 100.21.120.3 255.255.254.0

The template line:
Remark <Hostname@routers> on adres <Lan address@routers>
Results in:

Remark switchl on adres 100.216.80.23
Remark switch2 on adres 100.21.100.134
Remark switch3 on adres 100.21.120.3

If multiple named contexts are used in one template line, then configuration lines are generated for
all permutations of both contexts. In case a parameter is added in the above example for another
named context, which resulted in two records, a total of six configuration lines are generated.

<param@context:’key-value’'>

The named context parameter with a ‘key-value’ uses a given value (the 'key-value') as a filter. Only
those relation records where any of its parameters matches the key-value will be included. Relation
records that do not contain the value are ignored. The use of a key-value is not case sensitive. In case
multiple records of the named query apply, then again multiple configuration lines are generated.

<param@context:’'*key-value’'>
<param@context:’'*key?value*’>
The wildcard characters * and ? are allowed in with a key-value to be able to make non-exact

Technical documentation - https://wiki.netyce.com/

Last update: 2024/07/03

12:31 guides:reference:templates:relations https://wiki.netyce.com/doku.php?id=guides:reference:templates:relations

matches. Again, the match is not case sensitive.

Combining a key-value parameter and a normal parameter from the same context will result in the
same behaviour as if the contexts were different: different configuration lines are generated for all
permutations in both named contexts.

<param@context:param_y='key_value'>

<param@context:param_y="'*key?value*'>

This format allows you to specify which of the parameters in the relation must match the key-value.
Instead of trying to find the key-value in any of its columns, only the named one is tried. As with the
other context based substitutions, the number of resulting lines will depend on the possible
permutations. However, when the same 'context - param_y - key-value' filters are used within one
line, the relation records will be treated as one set and will not result in permutations.

safe to use without permutations:
vlan-name: <net name@vlans> vlan-id: <vlan id@vlans>
vlan-name: <net name@vlans:client> vlan-id: <vlan_id@vlans:client>

vlan-name: <net name@vlans:vlan id=client> vlan-id:
<vlan id@vlans:vlan id=client>

Indirect

Parameters can also be substituted indirectly. This option is useful in case a reference in the form of a
node name or template name is needed.

For normal substitution, the value of the mentioned parameter will be replaced by the string
<parameter>. However, in case this value also has the form of a parameter reference (<param2>),
then the reference will be substituted, provided a final value can be determined. We call this indirect
substitution.

Indirect substitution is also supported for context parameters. Meaning that the referenced parameter
points to a named context (<param@context>) and therefore can generate multiple lines.

The implementation however is not fully recursive. Only the first and second references can name a
context, any subsequent indirect references must name regular parameters.

Template line

In all above mentioned paragraphs mentioned template line it is also possible to use next to direct
commando’s the following:

{sub-template}

{template ref,context}

{template ref,context,conditional}

{template ref,context,conditional,conditional}

https://wiki.netyce.com/ Printed on 2026/01/17 08:25

2026/01/17 08:25 7/11 Relations and Contexts

Multiple conditionals can be added, which will make a logical 'AND'.

Commands with substitution of:

<param>

<param@>
<param@context>
<param@context:key>
[Eval(..)]
[IpAdd(..)]
[InvMask(..)]

In case of context references (parameters with a @), all references of the context will result in a line if
a condition forces the template line to be used.

Line concatenation

For situations where a context results in multiple lines, it is sometimes possible that this is executed
as a block instead of line by line. The can easily be realized using the concatenation sign \.

An example of a list of vlan interfaces with some details:

|<net address@vlans> != ''| interface vlan <vlan id@vlans>
description <net name@vlans> vlan

network address <net address@vlans>
|

This results in a useless configuration. Also the condition is limited to the first line so it should be
repeated for every line.

interface vlan 100

interface vlan 150

interface vlan 200
description Inrol vlan
description OSPF Vlan vlan
description Servers bk vlan
description Native vlan
network address 10.106.63.204
network address 10.106.63.140
network address 10.106.47.32

network address
|

By using concatenation, this one does result in the desired outcome. The condition is now also
applicable for the whole block so the Native subnet (without ip- address) is suppressed:

|<net address@vlans> != ''| interface vlan <vlan id@vlans> \
description <net name@vlans> vlan \
network address <net address@vlans> \

Technical documentation - https://wiki.netyce.com/

Last update: 2024/07/03

12:31 guides:reference:templates:relations https://wiki.netyce.com/doku.php?id=guides:reference:templates:relations

|
Results in the desired list:

interface vlan 100
description Inrol vlan

network address 10.106.63.204
|

interface vlan 150

description OSPF Vlan vlan

network address 10.106.63.140
|

interface vlan 200
description Servers bk vlan
network address 10.106.47.32

Sub-Templates

Sub-templates can be invoked from within the main template. This can be done iterative by nesting
sub-templates. Also conditional use is possible.

Template substitution

{sub-template}
|<param>| {sub-template}
{<template ref>}

Sub-templates are invoked and substituted by its name. The texts of the sub-template is being
evaluated line by line, like the main-template and included in the configuration. A sub-template
always uses the Current context.

Also a template can be invoked indirectly by using a parameter name in which the name of the sub-
template is mentioned. Template names are not case sensitive. The template names or its reference
may involve all template sorts: main, sub, automation, port.

Context-templates

In situations where sub-templates must be used several times, and by which each time a different set
of values must be used, Context-template forms can be used.

{template, context}
{<template-ref>, context}

Here the template template is substituted whereby every time a subsequent record out context is

https://wiki.netyce.com/ Printed on 2026/01/17 08:25

2026/01/17 08:25 9/11 Relations and Contexts

made the current-context.

As an example it is easy to generate all Vlan interfaces with its own ip-addresses with e.g. {V1an
interface, Vlans}.

The <template-ref> may also be a context parameter from the same context as for which the sub-
template is generated.

This is useful if the template name is mentioned in its context. Example:

{<Sla template@Sla monitors>, Sla monitors}

This results in the execution of all defined Sla_monitors whereby the Sla_template parameter contains
the template name of the context.

{<template-ref>, context, parameter='value’}
This is the most complex use of sub-templates being supported. Here a condition is used for the

context for which (indirectly) a template is being called upon. This is useful to generate the
configuration of a specific port or set of ports.

{<Port template@Port map>, Port map, Ifname='FastEthenet0/0/0'}
This conditional use of context templates allow for conditions of the type variable = value. The
“variable” must be an existing column in the relation used. The “value” given may contain wildcards

("*' and '?'). If the condition is to be used to exclude a (set of) relation records, then include an
exclamation sign (!) with the = operator.

include all GigabitEthernet interface variants (GB, 10G, 40G, 100G)
{ <port template@interfaces>, interfaces, port type = '*Gigabit*' }
do loopbacks only

{ <port template@interfaces all>, interfaces all, port class = Lo }
exclude ten-gigabit interfaces

{ <port template@interfaces>, interfaces, port type != ten* }

Filter on dhcp type and Net address

{DHCP pool, ipv4 customs node, dhcp type=2, Net address=<Net address>}

Technical documentation - https://wiki.netyce.com/

Last update: 2024/07/03
12:31

Configuration Generator

guides:reference:templates:relations https://wiki.netyce.com/doku.php?id=guides:reference:templates:relations

Version 2.0

The templates are being transformed into a specific vendor configuration or commands by the
configuration generator. The generator is a Perl script that accepts the syntaxes as described in this
document. The version 2.0 generator is optimized to minimize the load on the YCE database. Syntax
from version 1.0 that are no longer supported, will be automatically converted to version 2.0 before
send to the generator, but the templates itself are unchanged. Certain specials were not possible to
convert and need to be changed in the template.

Command line

De generator can be found on the YCE servers in the directory /opt/yce/bin and is named c2.pl

YCE configuration generator version 5. Creates template-based full node configurations or command
sets.

Usage: c2.p

-n, --node nodename
Mandatory argument.
Nodename must exist in YCE database
Any orphaned argument is taken as nodename
-t, --template templatel[,template]
Defaults to node main template
Multiple templates are appended in sequence
Template '--' is read from STDIN
-j, --jobid jobID
Optional job directory in /var/opt/yce/jobs/<jobID>
When provided, the log is created here,
otherwise logs to /var/opt/yce/logs/yce. log
-v, --verbose [level 0..3]
-h, --help

Output files:

with jobID - in directory /var/opt/yce/jobs/<jobID>
without - in directory /var/opt/yce/configs

with template - filename is <nodename>.cmd

without - filename is <nodename>.cfg

Examples:
Full node configuration in /var/opt/yce/0719 005/S1005011.cfg
--jobid 0719 005 --node S1005011

Dialer configuration for M1005011 in /var/opt/yce/configs/M1005011.cmd
--template cn dialer M1005011

https://wiki.netyce.com/ Printed on 2026/01/17 08:25

2026/01/17 08:25 11/11 Relations and Contexts

Dialer remove *and* add configurations for M1005011 in
/var/opt/yce/0719 005/M1005011.cmd
-j 0719 005 -n M1005011 -t cn_dialer del,cn dialer -v

Create configuration for FastEthernet port of S1005011 in
/var/opt/yce/configs/S1005011.cmd

echo '{<Port template@Port map>, Port map, Ifname=FastEthernet0/0/0}'|
c2.pl -n S1005011 -t --

From:
https://wiki.netyce.com/ - Technical documentation

Permanent link: :
https://wiki.netyce.com/doku.php?id=guides:reference:templates:relations v

Last update: 2024/07/03 12:31

Technical documentation - https://wiki.netyce.com/

https://wiki.netyce.com/
https://wiki.netyce.com/doku.php?id=guides:reference:templates:relations

	Relations and Contexts
	Contexts
	Default Context
	Named Context
	Current Context
	Context Directives
	Load or reload a context
	Use a named context
	Wait directive

	Remarks
	Named Context definition
	Transformed Context
	Relation Test

	Parameters
	Current Context
	Named Context
	Indirect
	Template line
	Line concatenation

	Sub-Templates
	Template substitution
	Context-templates

	Configuration Generator
	Version 2.0
	Command line

