
2026/02/03 11:55 1/16 Functions

Technical documentation - https://wiki.netyce.com/

Functions

Functions are used to perform specific manipulations on parameters in templates. The generic format
is [function_name(function_arguments)]. Functions are part of the template line or its
condition and can be mixed with conditionals and other parameter contexts.

Calculation functions

Calculation functions are meant to manipulate parameter values for use in templates. Hereby the
database values remain unchanged. The calculation functions are used in template lines for
substitution and conditional purposes. Functions can receive parameters or values as arguments. It is
permitted to nest functions.

IpAdd

[IpAdd(baseIP, offset1, .., offsetN)]

Add a series of offsets to a base ip-address.

Offsets may be numeric or an ip-address and will be added to the base to form a new ip-address. Any
offset may be a negative number or have negative ip digits. If one offset ip digit is negative, the entire
offset is interpreted as negative.

[IpAdd(192.168.1.64, 0.0.0.1)] -> 192.168.1.65
[IpAdd(192.168.1.64, -0.0.0.2)] -> 192.168.1.62
[IpAdd(192.168.1.64, 0.0.3.0, 0.0.2.-1)] -> 192.168.2.63

Base ip-addresses must be positive ip-addresses, invalid values result in “”.

If base address includes the prefix (eg 192.168.2.1/24) then the resulting address is calculated using
the actual start and end addresses of the subnet.

If the sum of the offsets is negative, the result is subtracted from the END of the subnet, and when
positive, the result is added to the actual start of the subnet:

[IpAdd(192.168.1.64/24, 0.0.0.10)] -> 192.168.1.10
[IpAdd(192.168.1.64/24, -5, 0.0.0.10)] -> 192.168.1.5
[IpAdd(192.168.1.64/24, 0.0.0.-10, -5)] -> 192.168.1.240

When the resulting address is not within the subnet, “” is returned.

Invalid offsets and the prefixes /0 and /32 are ignored.

Last update: 2024/07/03
12:31 guides:reference:templates:functions https://wiki.netyce.com/doku.php?id=guides:reference:templates:functions

https://wiki.netyce.com/ Printed on 2026/02/03 11:55

Ipv6Add

[Ipv6Add(baseIPv6, offset)]

Calculate an Ipv6 address from a base address and an offset.

The Ipv6 base can include a /prefix which causes the network-address to be normalised to the
corresponding size before the offset is added. The offset may have an Ipv6 format (eg ::1 or ::ff) or
numeric (0-65536).

If offset have a negative sign included, the offset is subtracted form the net-address, should the net-
address include a prefix, the offset is subtracted from the end of the subnet.

Examples:

-- addding to a base address:
[Ipv6Add(3001::10, ::1)] -> 3001::11
[Ipv6Add(3001::20, 10)] -> 3001::2a
[Ipv6Add(3001::0, ::abba)] -> 3001::abba
[Ipv6Add(3001::1, 3001::f)] -> 6002::10

-- adding to a normalised subnet
[Ipv6Add(3001::10/64, ::1)] -> 3001::1
[Ipv6Add(3001::20/64, 10)] -> 3001::10
[Ipv6Add(3001::1/64, 3001::f)] -> 6002::f

-- subtracting from a base address
[Ipv6Add(3001::10, -::1)] -> 3001::f
[Ipv6Add(3001::20, -10)] -> 3001::16
[Ipv6Add(3001::20, -1000)] -> 3000:ffff:ffff:ffff:ffff:ffff:ffff:fc38

-- subtracting from a subnet's end address
[Ipv6Add(3001::10/64, -::1)] -> 3001::ffff:ffff:ffff:fffe
[Ipv6Add(3001::10/64, -0)] -> 3001::ffff:ffff:ffff:ffff
[Ipv6Add(3001::20/64, -1000)] -> 3001::ffff:ffff:ffff:fc17

Base ip-addresses must be positive ip-addresses, invalid values result in “”.

InvMask

[InvMask(mask)]
This inverts an ip-mask in dotted decimal to its complementary value as a cisco wildcard.

Example
The following example:

[InvMask(255.255.255.0)]

2026/02/03 11:55 3/16 Functions

Technical documentation - https://wiki.netyce.com/

Results in:

0.0.0.255

NetAddress

[NetAddress(ip-address, size)]
This calculates the network address that belongs to the given network size or prefix. This is the
numeric value that is mainly used instead of the netmask (‘/18’, ‘/23’, etc). The function can be used
to calculate the network address of a host ip-address in case the subnet size is known. But the
function can also be applied to aggregate subsequent subnets used in an access list.

Example

Calculated Supernet = [NetAddress(<Sw_vlan1_addr>,<Ip_supermask>)]

NetRange

[NetRange(ip-address, size)]
Similar to NetAddress, the NetRange function returns the last address of a subnet. Its first argument
is an address in a given subnet, the second argument the subnets' size. The size may be specified as
the subnet-mask or as its prefix. Using this size, the corresponding subnet-address (the starting
address of the subnet) is calculated, and from there its last address.

Example

!
Last address = [NetRange(<Net_ip_gateway@vlans>, <net_mask@vlans>)]
!
! or equivalent:
Last address = [NetRange(<Net_ip_gateway@vlans>, <net_size@vlans>)]
!
! The last-but-one address can be obtained using the IpAdd function:
Last -but-one addess = [IpAdd([NetRange(<Net_ip_gateway@vlans>,
<net_size@vlans>)], 0.0.0.-1)]
!

Prefix

[Prefix(mask)] The Prefix() function returns the prefix from a subnet given its subnet mask.

Mask

[Mask(prefix)] The Mask() function returns the subnet mask from a subnet given its prefix

Last update: 2024/07/03
12:31 guides:reference:templates:functions https://wiki.netyce.com/doku.php?id=guides:reference:templates:functions

https://wiki.netyce.com/ Printed on 2026/02/03 11:55

number (0-32)

IpOctet

[IpOctet(ipaddress, format)]

Build string from the octets of an ip-address.

The format specifies which octets are concatenated and in what order. Including the '0' in the format
indicates each octet is padded with 0 to become 3 digits wide. The default format is '01234'.

examples:

ip-based-string: [IpOctet(172.17.0.29, '4')]
results in:
ip-based-string: 29

ip-based-string: [IpOctet(172.17.0.29, '024')]
results in:
ip-based-string: 017029

ip-based-string: [IpOctet(172.17.0.29)]
results in:
ip-based-string: 172017000029

ip-based-string: [IpOctet(172.17.0.29, '04321')]
results in:
ip-based-string: 029000017172

Count

[Count(@context)]
Returns the number of records in the named context. The argument can be in any of the context
forms (@context, param@context, or param@context:value) or even
param@context:column=value, but the function always returns the number of records in the
entire context, not those identified by the parameter or the value.

Example

! Number of eVPN Vlans is [Count(@eVPN_vlans)]
|[Count(@eVPN_vlans)]=(1,2)| Yes there are one or two eVPN Vlans
|[Count(@eVPN_vlans)]!=(1,2)| [Error(Expecting one or two eVPN Vlans)]
|[Count(@Ipv6_service)] != 0|{Global_ipv6} # Load template if not equal to
zero
|[Count(@Ipv4_service:static_route)] != 0|{static_route} # Load template
if not equal to zero
|[Count(@Ipv4_service:Vlan_id=100)] != 1|[Error("Missing vlan 100")]

2026/02/03 11:55 5/16 Functions

Technical documentation - https://wiki.netyce.com/

|[count(@ipv4_service:Net_name="loopba??_w*")]|Wildcards are supported. ? =
any single character, * = everything.

NOTE: commands like '>' or '<' are not possible.

Random

[Random(min, max , format)]

Randomly selects a numeric value between the minimum and maximum values provided.

min and max must be whole positive numbers. Leading zeros in the min values indicates zero
padding is desired up to the length of min. This padding is also controlled using the format
argument which overrides this behaviour.

The format argument can have a numeric value or Time. The latter will convert the random value in
the hh:mm:ss format.

When the format is numeric, the value of the format will define the padding width using 0's. A '3' will
result in 3 character wide values using zero-padded random values.

Example

random number [random(0, 1000)]
random number [random(000, 1000)]
random number [random(0, 1000, 4)]
!
random interval [random(0, 3600, 'time')]

Could give the values:

random number 31
random number 089
random number 0714
!
random interval 00:29:18

List

[List(separator, parameter@context)]
Returns a single string consisting of all values of parameter@context, each separated with the
separator string. This argument can be in any of the context forms (@context, param@context, or
param@context:’value’).

Example
The following template:

! comma-separated list of all vlan-ids on a port

Last update: 2024/07/03
12:31 guides:reference:templates:functions https://wiki.netyce.com/doku.php?id=guides:reference:templates:functions

https://wiki.netyce.com/ Printed on 2026/02/03 11:55

switchport trunk allowed vlan [List(‘, ‘, vlan_id@port_subnets)]
! list of vlan-ids on a port
switchport trunk allowed vlan [List(vlan_id@port_subnets)]

Will result in this:

! comma-separated list of all vlan-ids on a port
switchport trunk allowed vlan 10, 20, 30, 40
! list of vlan-ids on a port
switchport trunk allowed vlan 10 20 30 40

Rlist

[Rlist([separator,[range,]] parameter@context)]
Returns a single string consisting of all values of parameter@context, each separated with the
separator string. This argument can be in any of the context forms
(@context, param@context, or param@context:’value’).
The separator value is optional and defaults to ' ' (space).
The range value is also optional, but requires the separator value to be presents. The range value
defaults to '-'.

The Avaya port name format is also supported. Ports 1/2, 1/3, 1/4 → 1/2-4. A portlist of the form 2,
10, 11, 12, 13, 15 is modified into 2,10-13,15 and 1/2,2/10,2/11,2/12,2/13,3/2,3/3 transforms into
1/2,2/10-12,3/2-3.

Example
The following template:

! Ranged list of all the GigabitEthernet interfaces.
interface add [Rlist(Port_name@Interfaces:Gi)]
! Ranged list of vlans on the switch
vlan [Rlist(' and ',' to ', vlan_id@Ipv4_port)]

Will result in this:

! Ranged list of all the GigabitEthernet interfaces.
interface add Gi00/01-50
! Ranged list of vlans on the switch
vlan 10 to 20 and 30 to 40 and 100

Eval

Make sure to test this thoroughly
[Eval('string')]
The Eval() function is strictly a perl function, no other code intervenes with the arguments. Eval can
be used to calculate with parameters or to execute pattern matching operations.

https://en.wikipedia.org/wiki/Avaya#Networking
https://en.wikipedia.org/wiki/Avaya#Networking

2026/02/03 11:55 7/16 Functions

Technical documentation - https://wiki.netyce.com/

Numeric compares use ‘==’, ‘>=’ and the like, string compares use ‘eq’, ‘ne’, 'gt' and such. Numerics
are never quoted, strings ALWAYS. You can force a number to a string by quoting, but then compare
as strings, not numbers.

Note that the use of ‘&&’ is fine, but I would prefer to use the ‘and’ because a ‘||’ will likely cause
conflicts with the ‘|…|' of the condition. Using ‘and’ and ‘or’ is easier to read as well.

The string compares ‘eq’, ‘gt’, ‘lt’ and such are tricky because it results in alphanumeric compares
where case counts: ‘monkey’ is larger than 'Monkey'.

Example of how to compare with eval

nummeric and string
|[Eval((<Redundant> == 1) && ('<Node_position>' eq 'NA'))]| one goes
#
force string
|[Eval(('<Redundant>' eq '1') && ('<Node_position>' eq 'NA'))]| two goes
#
force string >= vs gt (greater then)
|[Eval(<Redundant> >= 0)]| tests as greater
|[Eval('<Redundant>' gt '0')]| tricky
#
string gt (greater then)
|[Eval('monkey' eq 'Monkey')]| not the same
|[Eval(lc 'monkey' eq lc 'Monkey')]| the same after lowercase compare
#
|[Eval('monkey' gt 'Monkey')]| monkey wins over Monkey
#

Example of the Eval flexibility

[Eval((<param>+100)*2)]
[Eval('<param>' =~ /^zt/i)]
[Eval(<param>>= 1024)]
[Eval(substr(<param>,0,2))]
|[Eval((<Redundant> == 1) or (<MigrationPhase> == 28))]|access-list 60

Example of how NOT to use Eval

mismatch nummeric
|[Eval('<Redundant>' == 1)]| num mismatch one
|[Eval(<Redundant> == '1')]| num mismatch two
#
mismatch string
|[Eval('<Node_position>' eq NA)]| str mismatch one
|[Eval(<Node_position> eq 'NA')]| str mismatch two
#
|[Eval('1' ne '01')]| oops
|[Eval('1' gt '01')]| oops again
#

Last update: 2024/07/03
12:31 guides:reference:templates:functions https://wiki.netyce.com/doku.php?id=guides:reference:templates:functions

https://wiki.netyce.com/ Printed on 2026/02/03 11:55

The Eval() function can be used in conditions. In that case the true or not true results are evaluated
as 1 and 0. In these cases it’s useful to explicitly validate these values:

|[Eval('<param>' =~ /^zt/i)]=’1’| template line

!
My Site type is: <Site_Type>
!
-- when string must match a pattern use:
| [Eval('<Site_type>' =~ /cpe/i)] =1 | <Site_type> like CPE
-- note the quotes around the *string* <Site_type>, the substitution takes
place BEFORE the functions like Eval()
!
-- This works identical to:
| [Eval('<Site_type>' =~ /cpe/i)] | <Site_type> like CPE
!
-- when it must NOT match the pattern use
| [Eval('<Site_type>' =~ /cp/i)] !=1 | <Site_type> not like CPE
| [Eval('<Site_type>' =~ /core/i)] !=1 | <Site_type> not like CORE
!
-- the !~ will (currently) not work, it produces a syntax error:
| [Eval('<Site_type>' !~ /cp/i)] | <Site_type> not like CPE
!

RESULT:

Configuration encountered errors
!
My Site type is: CPE
!
 CPE like CPE
!
 CPE like CPE
!
 CPE not like CORE
!
|!(XXXXX Cannot evaluate: ''CPE' ~ /cp/i': syntax error at (eval 14) line 1,
near "'CPE' ~"
)| CPE not like CPE
!

Error

[Error(message)]
This generates an error conditions at the moment of template generation. This function is meant to be
able to test conditions that should limit the roll-out of the template. As an example, one can count
with the Count() function if the number of vlans are correct. If not, that the Error() will generate a
descriptive error message.

2026/02/03 11:55 9/16 Functions

Technical documentation - https://wiki.netyce.com/

Example

|[Count(@Port_subnets)] = '0'|[Error(‘No subnets assigned to this port’)]

MD5

[MD5(string)]
This calculates a MD5_hex hash over the argument string. This function can be used to encrypt
information like a password that should be exchanged between two nodes.

Example

exchange password [MD5(‘<hostname>:mypassword’)]

Dec_hex

[Dec_hex(string)]
[Dec_hex(string, padding)]
Converts a Decimal into its Hexadecimal value.

The optional padding value specifies the length of the value returned by adding leading '0' when
needed. If the padding value is negative, the padding creates trailing spaces.

Hex_dec

[Hex_dec(string)]
[Hex_dec(string, padding)]
Converts a Hexadecimal into its (unsigned) Decimal value.

The optional padding value specifies the length of the value returned by adding leading '0' when
needed. If the padding value is negative, the padding creates trailing spaces.

Str_hex

[Str_hex(string)]
Creates a hexadecimal code from a string

Hex_str

[Hex_str(hex-string)]
Converts a hexidecimal code back to its corresponding string

Last update: 2024/07/03
12:31 guides:reference:templates:functions https://wiki.netyce.com/doku.php?id=guides:reference:templates:functions

https://wiki.netyce.com/ Printed on 2026/02/03 11:55

Ip_hex

[Ip_hex(<ip_address>)]
[Ip_hex(<ip_address>, padding)]

Convert a dotted-decimal IPv4 address in to a Hexadecimal value. It converts each decimal value into
a hex value and concatenates those in one string. Bij default each converted decimal is padded to 2
characters, adding a leading '0' where needed.

The optional padding variable can be increased to create more leading '0's.

[Ip_hex('10.141.61.171')]
results in:
 0A8D3DAB

[Ip_hex('10.141.61.171', 4)]
results in:
 000A008D003D00AB

Hex_ip

[Hex_ip(<ip_in_hex>)]

[Hex_ip(<ip_in_hex>, padding)]

Convert a hexadecimal formatted IPv4 address back into an IP value. It converts each hexadecimal
value into a decimal value and concatenates those in a dotted decimal string.

Bij default the hexadecimal string is chopped into sets of 2 characters before converting those to
decimal values. By increasing the padding value, the number of characters grouped before conversion
can be increased.

The function returns a string of dotted decimals, but does not check if it forms a valid ip-address!

[Hex_ip('0A8D3DAB')]
results in:
 10.141.61.171
[Hex_ip('000A008D003D00AB', 4)]
results in:
 10.141.61.171

Null

The Null function will not be used a lot in templates. It serves to be able to cancel the line with a
specific function from the configuration. It’s therefor mainly used when the value [Null] is
generated indirectly by parameter substitution in order to suppress that line. Internally, the Null-

2026/02/03 11:55 11/16 Functions

Technical documentation - https://wiki.netyce.com/

function is used when filling the extra fields (parameters) that result during a ‘Transform’ of a
Relation-query. Regarding transformed parameters for which no value exists the [null] is being
substituted so only existing values can be used.

Replace

Replace(string,match,[replace],[all])

Replace searches for a specific string-value and replaces it with another string-value. The replace
value can be empty. The match string is non case-sensitive.

The optional all argument, when non-zero, will replace the string not just for the first occurrence, but
for all occurrences

Example
The following

<hostname> - [Replace(<hostname>,'test', 'TEMP')]
<hostname> - [Replace(<hostname>,'test')]

<hostname> - [Replace(<hostname>,'t','x')]
<hostname> - [Replace(<hostname>,'t','x',1)]

Will result in:

TEST_ROUTER001 - TEMP_ROUTER001
TEST_ROUTER001 - ROUTER001

TEST_ROUTER001 - xEST_ROUTER001
TEST_ROUTER001 - xESx_ROUxER001

Ucase / Lcase / FirstCap

Ucase(string)
Lcase(string)
FirstCap(string)

These functions convert the case of the string, where Ucase stands for uppercase, Lcase for lowercase
and FirstCap stands for First character Capital.

Example
The following

<hostname> - [Ucase(<hostname>)]
<hostname> - [Lcase(<hostname>)]
<hostname> - [FirstCap(<hostname>)]

Will result in:

Last update: 2024/07/03
12:31 guides:reference:templates:functions https://wiki.netyce.com/doku.php?id=guides:reference:templates:functions

https://wiki.netyce.com/ Printed on 2026/02/03 11:55

test_router001 - TEMP_ROUTER001
TEST_ROUTER001 - test_router001
test_router001 - Test_router001

Substring

Substring(string, offset, length)

Substring extracts a portion of a string based on startpoint and length.
First character is at offset zero.

If OFFSET is negative, starts that far back from the end of the string.
If LENGTH is omitted, returns everything through the end of the string.
If LENGTH is negative, leaves that many characters off the end of the string.

my $s = "The black cat climbed the green tree";
[Substring("The black cat climbed the green tree", 4, 5)] # black
[Substring("The black cat climbed the green tree", 4, -11)] # black cat
climbed the
[Substring("The black cat climbed the green tree", 14)] # climbed the
green tree
[Substring("The black cat climbed the green tree", -4)] # tree
[Substring("The black cat climbed the green tree", -4, -2)] # tr

WordIdx

WordIdx(string, separator, index, index, …)

WordIdx splits a string using the 'separator' and returns the Word indicated by the index number. The
default separator is a space but the separator can be a regular expression like

split on comma with or without whitespace
'\s*,\s*'
split on the dot character (of an ip-address)
'\.'

Use quotes around the separator when a comma is used, and use a backslash \ to protect special
characters used in regular expressions ('.', '[', ']', '^', '$', '-', '+', '(', ')')

When the index is omitted, the first word is returned by default. Use 1 for the first word, 2 for the
second and so on. An index of -1 returns the last, -2 the fore last and so on.

If multiple indices are used, the corresponding words are returned in the order requested. Multiple
indexed words are always separated by a space.

The index 0 has special meaning, it returns the number of elements that the split produced.

2026/02/03 11:55 13/16 Functions

Technical documentation - https://wiki.netyce.com/

Some examples and their results:

#
[WordIdx('one two three')]
=> one
#
[WordIdx('one two three',,2)]
=> two
#
[WordIdx('one two three',,-1,1)]
=> three one
#
[WordIdx('one, two, three', '\s*,\s*', 3)]
=> three
#
[WordIdx('192.168.17.1', '\.', 4,3)]
=> 1 17
#
[WordIdx('192.168.17.1', '\.', 4)].[WordIdx('192.168.17.1', '\.', 3)]
=> 1.17
#
[WordIdx('192.168.17.1', '\.', 0)]
=> 4
#

RowIdx

RowIdx(parameter@relation, row)
RowIdx(parameter@relation:value, row)

RowIdx returns a single parameter value from a specific row of a relation instead of all the parameter
values of each row.

Port-name: <port_name@interfaces>
-> this will insert all interface names
#
RowIdx: [RowIdx(port_name@interfaces, 0)]
-> this will insert the first interface name in the relation
#
RowIdx: [RowIdx(port_name@interfaces:giga*, -2)]
-> this will insert the last but one gigabit interface name

When accessing parameters through relations, all (matching) parameter values of the relation are
inserted. But occasionally, only the first parameter value of the relation is desired. Or only the last.

For these situations the function RowIdx() is created. It takes a parameter reference from a relation
and the row number (index) as arguments. Only one value is substituted.

The relation reference may have a value filter and supports wildcards. By default row '0' is used.

Last update: 2024/07/03
12:31 guides:reference:templates:functions https://wiki.netyce.com/doku.php?id=guides:reference:templates:functions

https://wiki.netyce.com/ Printed on 2026/02/03 11:55

Row index numbers can be positive (0 at top), or negative (-1 at bottom). Non existent rows will result
in an empty string.

Coalesce

Coalesce(<parameter>, <parameter@relation>, …)

Coalesce() returns from a list of parameters the first non-empty value. There is no practical limit on
the number of parameters in the list. Undefined parameters and empty strings are both considered an
empty value, but the number zero ('0') is considered a non-empty value. If none of the parameters
contains a value. the function returns a blank (undefined).

The Coalesce function is intended to insert a parameter value that can be defined in different places
(objects) but have a hierarchical dependency. By listing each in the hierarchical order in the coalesce
function, the one considered overriding the remaining is returned - if available. Otherwise the next
one will be considered.

Enable-secret: [coalesce(<Enable_secret@SiteRouter>,
<Default_enable_secret@Domain>, <Enable_secret@Lookup)]

-> Enable-secret: scramble-03427

All parameters in the Coalesce list must be enclosed in edged brackets ('<..>') or the parameter
name will be returned as entered.

Note that when using relations, the line including the Coalesce() will be executed on all rows the
relation returned.

Node_mgmt_ipv4

Node_mgmt_ipv4(<hostname>)

Returns the ipv4 management address of the node indicated. The node must be known to the YCE
database

Node_mgmt_ipv6

Node_mgmt_ipv6(<hostname>)

Returns the ipv6 management address of the node indicated. The node must be known to the YCE
database

2026/02/03 11:55 15/16 Functions

Technical documentation - https://wiki.netyce.com/

Node_port_ipv4

Node_port_ipv4(<hostname>, <portname>, <columnname>, [<filter>])

The functions Node_port_ipv4 and Node_port_ipv6 allow you to retrieve ip-subnet/ipv6-subnet
attributes from subnets assigned to a specific port from a node. Three mandatory arguments are
required: the 'nodename', the 'portname' and the ip-subnet 'columnname'. The portname can either
be the internal Port_name or the vendor dependent full interface name.

The optional fourth argument 'filter' can be used to select the desired subnet if more than one subnet
is assigned to the port. This 'filter' option behaves similar to the relation-syntax filtering where a
'value' by itself will be compared against all columns (like “column@Ip_subnet:filter”) or a
'column=value' filter will compare only the indicated column (like “column@Ip_subnet:key=value”).

Examples:

[Node_port_ipv4(<hostname>,Gi01/00/03,Ip_parameter)]
[Node_port_ipv4(<hostname>,GigabitEthernet1/0/3,Ip_parameter)]

[Node_port_ipv4(<hostname>, 'Gi01/00/03', 'Net_address', 'Vrf_id=3')]
[Node_port_ipv4(<hostname>, 'GigabitEthernet1/0/3', 'Net_address', Vrf_id =
'3')]

Node_port_ipv6

Node_port_ipv6(<hostname>, <portname>, <columnname>, [<filter>])

The functions Node_port_ipv4 and Node_port_ipv6 allow you to retrieve ip-subnet/ipv6-subnet
attributes from subnets assigned to a specific port from a node. Three mandatory arguments are
required: the 'nodename', the 'portname' and the ip-subnet 'columnname'. The portname can either
be the internal Port_name or the vendor dependent full interface name.

The optional fourth argument 'filter' can be used to select the desired subnet if more than one subnet
is assigned to the port. This 'filter' option behaves similar to the relation-syntax filtering where a
'value' by itself will be compared against all columns (like “column@Ip_subnet:filter”) or a
'column=value' filter will compare only the indicated column (like “column@Ip_subnet:key=value”).

The ipv6 address will be returned in the 'short' format.

Examples:

[Node_port_ipv6(<hostname>,Gi01/00/03,Ip_parameter)]
[Node_port_ipv6(<hostname>,GigabitEthernet1/0/3,Ip_parameter)]

[Node_port_ipv6(<hostname>, 'Gi01/00/03', 'Ipv6_subnet_prefix', 'Vrf_id=3')]
[Node_port_ipv6(<hostname>, 'GigabitEthernet1/0/3', 'Ipv6_subnet_prefix',
Vrf_id = '3')]

Last update: 2024/07/03
12:31 guides:reference:templates:functions https://wiki.netyce.com/doku.php?id=guides:reference:templates:functions

https://wiki.netyce.com/ Printed on 2026/02/03 11:55

From:
https://wiki.netyce.com/ - Technical documentation

Permanent link:
https://wiki.netyce.com/doku.php?id=guides:reference:templates:functions

Last update: 2024/07/03 12:31

https://wiki.netyce.com/
https://wiki.netyce.com/doku.php?id=guides:reference:templates:functions

	Functions
	Calculation functions
	IpAdd
	Ipv6Add
	InvMask
	NetAddress
	NetRange
	Prefix
	Mask
	IpOctet
	Count
	Random
	List
	Rlist
	Eval
	Error
	MD5
	Dec_hex
	Hex_dec
	Str_hex
	Hex_str
	Ip_hex
	Hex_ip
	Null
	Replace
	Ucase / Lcase / FirstCap
	Substring
	WordIdx
	RowIdx
	Coalesce
	Node_mgmt_ipv4
	Node_mgmt_ipv6
	Node_port_ipv4
	Node_port_ipv6

