2025/10/29 13:11 1/5 Distributed Scheduler

Distributed Scheduler

Introduction

On NetYCE installations using multiple servers, Jobs scheduled for execution can be directed to
specific servers or distributed over targeted servers. By setting up scheduler rules in the designated
configuration file practically all situations can be covered using these rules.

First, a basic understanding of the NetYCE scheduler is needed. Each NetYCE server, regardless of
front-end or database role has a scheduler running capable of executing jobs on the devices that are
reachable for it. Jobs offered for scheduling to a server will be executed on that server. When creating
scheduler rules, these rules will therefore have to determine what server the job-to-be-scheduled
needs to be submitted to.

These rules need not only have to determine the desired server, but also the scheduler queue. Every
scheduler has a unique scheduler setup that defines its queues. Usually a scheduler has two or three
queues that it maintains, each intended to handle similar types of jobs. The parameters defining a
queue are primarily the interval between job starts (anywhere between 1 and 60 seconds, resulting in
a humber of slots per minute), and the number of jobs allowed to run in parallel. These parameters
can be tuned to the server hardware and the job types.

Queues are defined in /opt/yce/etc/tool setup.xml and is accessible from the menu “Admin -
System - Edit configs” under “YCE tools setup”. The page Queue Operation describes the queue
parameterisation in detail. A description of the job execution by the scheduler is described in the page
on Job Configuration.

Job submission

The use of the distributed schedules changes only one detail of in the front-end jobs that support it:
the addtional drop down menu for the server selection.

]

It uses a default value of -auto- which implies that the rule set (if it exists) will be used. The other
options this menu has are the hostnames of the other NetYCE servers as available in the

yce setup.xml. Their selection overrides any rule set and just submits the selected nodes to the
server indicated.

]

At this time not all Job submitting tools support the Distributed scheduler. Their number will increase
with subsequent releases.

When tools supporting the Distributed scheduler submit their jobs, the resulting entries are displayed
in the format below. In this case four nodes on the same location has jobs submitted. The selection
was for '-auto-' server.

The results show that the jobs were alternately submitted to the two servers, each time finding the
first free slot. The second line illustrates the auto scheduler was used, and the names of the two
resulting servers. To locate those servers, rule 1.0 and rule 1.1 were found matching.

Technical documentation - https://wiki.netyce.com/

https://wiki.netyce.com/doku.php?id=guides:reference:jobs:queue_operation
https://wiki.netyce.com/doku.php?id=guides:reference:jobs:job_configuration

Last update: 2024/07/03

12:31

guides:reference:jobs:distr_scheduler https://wiki.netyce.com/doku.php?id=guides:reference:jobs:distr_scheduler

]

Scheduler rules

Like the tool-setup and queue definition are the scheduler rules defined using a configuration file that
is accessible from the menu “Admin - System - Edit configs” and uses the “YCE scheduler rules” item.

This file is automatically synchronised (when modified from the front-end) over all NetYCE servers so
all share the same rule set. The scheduler rule set use a Perl-based format and consist of an array of
rule-objects.

The list of rule-objects have attributes like the sample below:

$sched rules

log msg ‘rule 1.0
attribute ‘Client type'
values 'C0', 'RI', '/"B2B/'
servers ‘one', 'two'
queue ‘yce'

on_match undef

log msg ‘rule 2.0'
attribute 'Client type'
values 'DMZ1'

servers ‘three'

queue "dmz'

log msg ‘rule 3.0
attribute ‘Client type'
values '/"DMZ/'

servers ‘three', 'four'
gueue "dmz'

These attributes are:

Name

Type Purpose

log_msg |string

the name of the rule that will be logged when scheduling a job. It serves
to trace the rules used when assigning the job

attribute string

the name of the NetYCE database field used to compare against the
values to make this rule a match. The set of attributes can either use a
default or refer to an existing Relation. Attribute uses are independent:
Every rule can use a different attribute, or all can use the same.

https://wiki.netyce.com/ Printed on 2025/10/29 13:11

http://perldoc.perl.org/functions/values.html
http://perldoc.perl.org/functions/undef.html
http://perldoc.perl.org/functions/values.html
http://perldoc.perl.org/functions/values.html

2025/10/29 13:11 3/5 Distributed Scheduler

Name Type Purpose

the value of attribute that must be equal to make this rule a match.
When providing multiple values in an array format ('[...]'), the attribute
value must match one of these values to make the rule 'true'. The
specified values can be literal (eq 'CO') or a regular expression (eg
'/b2b.*/'). The compares are always case INsensitive.

the hostname of the NetYCE server(s) where the job can be scheduled.
When profiding multiple values in aan array format ('[...]"), each of these
servers schedulers will be contacted to locate the first available time slot
of the requested queue using the requested start day and time. The
earliest time slot available determines the server where the job will be
submitted. This mechanism allows for load balancing over various NetYCE
servers.

the name of the scheduler queue where the job should be submitted to.
Non-existent queue names will be be replaced by the default yce queue.

if the rule was found to be matching (‘'true'), the optional on-match can
array of rule- |provide additional rules that can be evaluated. The effect is that
objects consecutive on-match rules form an 'AND' logic whereas the rules in the
rule-set array form a logical 'OR'.

string or array

values of strings

string or array

servers .
of strings

queue string

on_match

In the above sample, three rules are defined. These are evaluated for each Node selected to find the
NetYCE server and queue to submit the Job to. The rules are evaluated in the order of the array - i.e.
from top to bottom. If a rule matches, the evaluation of remaining rules in the array are skipped.

Nested rules

If rules need to evaluate two (or more) attributes to locate the desired NetYCE server and queue, the
on_match attribute can be added to a rule. The on_match assignment is in itself an array of rules.
These rules will only be evaluated when its defining rule is 'true'. So, when two attributes must be
considered, the addition of an on_match set of rules using the second attribute to compare agains
will perform this feat.

As an example, the sample rule-set above can be extended to include some subrules using the
attribute Site type:

$sched rules

log msg ‘rule 1.0
attribute ‘Client type'
values ‘c0', 'RI', '/"B2B/'
servers ‘one', 'two'
queue ‘yce'
on _match
log msg ‘rule 1.1°
attribute ‘Site type'
values '/Core .*/'
servers ‘one’
log msg ‘rule 1.2°

Technical documentation - https://wiki.netyce.com/

http://perldoc.perl.org/functions/values.html
http://perldoc.perl.org/functions/values.html

Iia;;fpdate: 2024/07/03 guides:reference:jobs:distr_scheduler https://wiki.netyce.com/doku.php?id=guides:reference:jobs:distr_scheduler

attribute ‘Site type'
values ‘/Rem .*/'
servers ‘one

"two'

log msg ‘rule 2.0'
attribute ‘Client type'
values 'DMZ1'

servers ‘three’

queue "dmz'

log msg 'rule 3.0'
attribute ‘Client type'
values '/"DMZ/'

servers "three', 'four'
gueue "dmz'

The queue attribute may be omitted. When not specified, it is inherited from the level(s) above.

Logically, the rules on the same level in the array will form an 'OR’, the on-match rules are equivalent
to an 'AND". By creating on_match rules with multiple entries in its array, the 'AND' has immediately
been extended with nested 'OR's.

The nesting of rules is permitted up to 50 levels.

If none of the rules are matched, it will use all available servers to load balance as described above.

Attributes

The selected Node determines the attribute value against which the rule is compared. So when
comparing the 'Client_type' in a rule, it is the client-type of the Node that is compared against the
value (or value-list) of the rule.

By default a set of attributes of the Node are retrieved from the database that will suffice for most
rules. It uses the result of the SQL query:

SiteRouter

Client ClientCode

Site keys ClientCode, SiteCode
Hostname '<hostname>'

However, to allow the rules to use more extensive database access, the sched rules.conf file can
override this default query by specifying a relation name to work with:

https://wiki.netyce.com/ Printed on 2025/10/29 13:11

http://perldoc.perl.org/functions/values.html
http://perldoc.perl.org/functions/values.html
http://perldoc.perl.org/functions/values.html

2025/10/29 13:11 5/5 Distributed Scheduler

override default query to retrieve node attributes using a relation
$sched relation ‘SiteRouter’

From:
https://wiki.netyce.com/ - Technical documentation

Permanent link:
https://wiki.netyce.com/doku.php?id=guides:reference:jobs:distr_scheduler }

Last update: 2024/07/03 12:31

Technical documentation - https://wiki.netyce.com/

https://wiki.netyce.com/
https://wiki.netyce.com/doku.php?id=guides:reference:jobs:distr_scheduler

	[Distributed Scheduler]
	Distributed Scheduler
	Introduction
	Job submission
	Scheduler rules
	Nested rules
	Attributes

