
2025/07/11 17:31 1/21 YCE Exchange gateway and API

Technical documentation - https://wiki.netyce.com/

YCE Exchange gateway and API

The YCE exchange gateway is intended for integrations with north-bound systems although it can also
be used to interface with peer systems. The gateway is an XML based request-response system where
YCE can be instructed to perform an action or deliver information.

Several types of integrations have been realized to date and due to its highly flexible and extensible
implementation, capable to include many custom or future functions. It functions include those of the
YCE product's API.

At the core, each YCE server has a service running to accept incoming requests to execute specific
tasks. These tasks can be specific to YCE or customer specific. YCE API functions available include the
preparation of (standardized) changes (e.g. adding new devices, setting up services, manipulating
topology) as well as the scheduling of the provisioning of these changes and their monitoring.
Customer specific functions allow for the interaction with YCE-connected systems like Infoblox to
perform IPAM, DNS and DHCP tasks.

Authorization

The request header requires both a userid and a passwd. The userid must match one of the local
user-id's (not ldap!) or may be xch which is a built-in userid for the API only.

The password may be cleartext (not advised), the md5-hash from the NetYCE YCE.Users.Passwd
column, or the des3 encrypted password that can be generated using the cli tool
/opt/yce/system/api_crypt.sh

The md5-hash taken from the indicated table cannot be self-generated since it is a hash created using
a concatenation of the userid and a secret realm string.

Implementation

The Exchange or API system consists of two parts, a daemon and a series of plugins.

First there is the xch-daemon that permanently runs in the background to accept new requests from
remote systems using the network. It listens to port 8888 by default and is available on any of the
YCE servers of its implementation.

The daemon can accept tcp socket calls over which it receives the request in XML format directly, but
the method used most widely is the HTTP POST. In this case the XML formatted request will be issued
as a parameter of the POST. During the processing of the request the network connection is kept alive
until a response is sent. Depending on the transaction type, the response is available immediately or
can take several minutes.

The Exchange daemon is multi-threaded so that requests are processed in parallel. Up to 30 requests
can be executed in parallel, any additional requests are queued until a slot is available. During the
queuing the connection remains open. From issuers perspective these calls are identical, just take a
little longer.

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

https://wiki.netyce.com/ Printed on 2025/07/11 17:31

The second part of the exchange gateway are the plugins. These plugins provide the actual
implementation of the request and are therefore highly modular and easily extensible. Most of the
integrations between NetYCE and external NMS systems to date are using xch-plugins. Also the
various NetYCE API functions are realized as an xch-plugin.

The plugins currently available:

NetYCE command jobs - xch_jobs
NetYCE Service type and service task launcher - xch_st
NetYCE NCCM function - xch_nccm
NetYCE system maintenance functions - xch_system
Infoblox IPAM and DHCP provisioning - xch_ib_dhcp
Infoblox DNS provisioning - xch_ib_dns
Other modules are customer specific and deal with Maintenance Event suppression, Event
Enrichment and CMDB updates.

XCH configuration

Exchange plugins are registered in a configuration file, /opt/yce/etc/xch_tasks.ini This file is
read by the xch daemon and maps the incoming request task-name to the plugin module and the
function name.

[system_status]
auth_agent = internal
user_level = 5
task_module = xch_system
task_sub = system_status

[system_fput]
auth_agent = internal
user_level = 5
task_module = xch_system
task_sub = fput

[system_get]
auth_agent = internal
user_level = 5
task_module = xch_system
task_sub = fget

In the section above of the ini-file, three different tasks are exposed to the the xch server from the
same module: system status, system_fput and system_get. All three are intended for internal use
only, which is reflected in the authorization agent that is to be used in these tasks. The plugin module
is 'xch_system' from which three different functions (subroutines) are called. The value for user-level
refers to the authorization and the minimum user role that is required.

[command_job]
auth_agent = yce

2025/07/11 17:31 3/21 YCE Exchange gateway and API

Technical documentation - https://wiki.netyce.com/

user_level = 2
task_module = xch_jobs
task_sub = command_job

[job_status]
auth_agent = yce
user_level = 3
task_module = xch_jobs
task_sub = job_status

In this example the command jobs are made accessible through the API. The submission of a job and
the retrieval of the job-status are registered in the plugin module xch_jobs, both requiring a level
three authorization using the normal yce user administration.

XCH Transaction types

Service type execution

Service task

Part of the YCE modeling is defined in Service types. A Service type mirrors in high detail the actions a
designer performs when defining how a device must be connected or a service implemented. The
process can be visualized as making a drawing of the design where nodes are added, lines are drawn,
ports are assigned, vlans created and addresses mapped.

YCE uses Service types to define the standardized actions and have them executed by engineers or
operators where the design (as modeled) allows them to do so. In this way a single click can result in
an entire device layer be added and properly hooked up to the core devices, including all
(management) IP addresses, vlan setup and port configurations of all devices involved.

The XCH Service task request allows remote systems to initiate the execution of a Service type (or
service task). An example of such a xml request is shown below. The set of attributes provided is
highly customizable. In the case below, the minimal set is used.

<task response="">
 <head
 passwd="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 task_name="service_type"
 task_type="xml_request"
 userid="loginid"
 />
 <request
 client_type="SAM"
 service_class="Core"
 service_type="SAM_c6509_core"
 service_task="Create"
 client_code="SAM1"

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

https://wiki.netyce.com/ Printed on 2025/07/11 17:31

 site_code="SAM1-BR01"
 />
</task>

Custom variables

In extension of the Service type above, custom variables can be inserted in the Service type using the
API. The value parameter in most Service type records that make up a Service type can be supplied
by the API.

The variable names of these custom variables in the API call can either be chosen freely or are pre-
defined, depending on how the Service type was defined. If the designer of the service types used
brackets, (), around the names in the Value parameter, that value MUST be provided by the API
using that name as the custom name.

The Service type as defined above will need to be called by the API using the request below:

<task>
 <head passwd="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 task_name="service_type" task_type="xml_request" userid="loginid" />
 <request
 client_type="SAM"
 service_class="api"
 service_task="addLink"
 service_type="api"
 >
 <custom name="node_nameA" type="name" value="TE--RN01001" />
 <custom name="node_nameB" type="name" value="TE--RN02002" />
 <custom name="port_nameA" type="name" value="Gi01" />
 <custom name="port_nameB" type="name" value="GI03" />
 <custom name="port_chanA" type="name" value="11" />
 <custom name="port_chanB" type="name" value="22" />

2025/07/11 17:31 5/21 YCE Exchange gateway and API

Technical documentation - https://wiki.netyce.com/

 <custom name="port_mode" type="name" value="Auto" />
 <custom name="port_shut" type="name" value="N" />
 <custom name="port_speed" type="name" value="Auto" />
 </request>
</task>

This method provides exact control over which API variable gets used in each of the Service type
records, but will not allow the Service type to be used without the API.

A set of reserved names can be used where such a mix of API and front-end usage of the Service
types is required. The service types can be designed including valid values but can be replaced by
providing a reserved custom variable if provided by the API call. The variable names are named after
their obvious use: client_code, site_code, node_name, port_name, template,
port_channel, port_shut, etc. Actually, the example above already includes two of these to
override the values provided in its last two lines.

Retrieving information

The Service types API also allows to retrieve information from the NetYCE network model. In the
Service type, 'Added' objects and 'Located' objects are often manipulated using an 'Alias'. The
operator chooses relevant names for these objects to clearly identify them. Each of these aliased
NetYCE objects consists of a data-type that has a set of attributes. These Objects including all their
attributes can be returned in the API response by setting a flag in the Service type API request.

By setting log_aliases to yes in the API request, all aliases used in the Service type are reported in
full. Since many of the Objects include Custom Attributes, these are included in the data-set.

As an example, consider a Service type where a Node is located using Client_code and Site_code. The
following XML call will retrieve the Client, Site, and Node data-sets.

<task response="">
 <head passwd="xxxxxxxxxxxxxxxxx" task_name="service_type"
task_type="xml_request" userid="loginid" />
 <request
 client_type="ServiceProvider"
 service_class="SP_core"
 service_task="serverport"
 service_type="api"
 log_aliases="yes">
 <custom name="Hostname" type="name" value="node12" />
 </request>
</task>

<task>
 <head abort_on_error="1" error="0" log_level="0" passwd="xxxxxxxxxxxxxx"
req_host="::ffff:192.168.56.1" status="completed" task_id="0716_0021"
task_level="4" task_name="service_type" task_type="xml_request"
userid="loginid">
 <logs/>
 </head>

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

https://wiki.netyce.com/ Printed on 2025/07/11 17:31

 <request
 client_type="ServiceProvider"
 log_aliases="yes"
 request_id="1"
 service_class="SP_core"
 service_task="serverport"
 service_type="api">
 <custom name="Hostname" type="name" value="node12"/>
 </request>
 <response client_type="ServiceProvider" log_aliases="yes"
request_error="0" request_id="1" request_status="completed"
service_class="SP_core" service_task="serverport" service_type="api">
 <alias name="<node>" type="node" value="node12"/>
 <alias name="<port>" type="port" value="33737"/>
 <alias_records>
 <node Boot_loader="" Boot_system="" ClientCode="ServiceProvider"
Console_line="0" DeviceStatus="2" Domain="SP" Enable_secret="cisco"
Hostname="node12" NodeType="0" Node_class="core"
Node_fqdn="node12.tmobile.local" Node_position="NA" Node_type="c3925"
Orig_node="" Par_group="Node" Redundant="1" Rtr_notes="" Service_key="20493"
Sid="36883" SiteCode="core" Template="c3925" Template_rev=""
Terminal_server="" Var_name="" Var_value="" Vendor_type="Cisco_IOS"/>
 <port Bandwidth_down="" Bandwidth_profile="" Bandwidth_up=""
Chan_id="" Hostname="node12" If_name="GigabitEthernet0/0/2"
Interface_id="33737" Port_class="Gi" Port_description="Server template"
Port_id="2" Port_mode="Full" Port_module="" Port_name="Gi00/00/02"
Port_reserve1="" Port_reserve2="" Port_reserve3="" Port_shut="N"
Port_speed="1000" Port_template="server" Port_type="GigabitEthernet" Sid="0"
Slot_id="0/0" Sys_slot="" Timestamp="2018-07-16 16:39:17"/>
 </alias_records>
 <custom name="Hostname" type="name" value="node12"/>
 <log>Pass1: syntax check completed</log>
 <log>Pass2: execution</log>
 <log>execution line 1</log>
 <log>1 parsed: LOCATE - NODE - GLOBAL - NODE_NAME - (Hostname) -
<node></log>
 <log>1 custom resolve: 'node_name/(hostname)' as 'node12'</log>
 <log>1 exec: LOCATE - NODE - GLOBAL - NODE_NAME - node12 -
<node></log>
 <log>set alias '<node>' to 'node12' as 'node'</log>
 <log>execution line 2</log>
 <log>2 parsed: LOCATE - PORT - <node> - PORT_TEMPLATE_FIRST -
int_unused - <port></log>
 <log>2 alias resolve: '<node>' as 'node12'</log>
 <log>2 exec: LOCATE - PORT - node12 - PORT_TEMPLATE_FIRST -
int_unused - <port></log>
 <log>set alias '<port>' to '33737' as 'port'</log>
 <log>execution line 3</log>
 <log>3 parsed: ASSIGN - PORT - <port> - PORT_TEMPLATE - server

2025/07/11 17:31 7/21 YCE Exchange gateway and API

Technical documentation - https://wiki.netyce.com/

- </log>
 <log>3 alias resolve: '<port>' as '33737'</log>
 <log>3 exec: ASSIGN - PORT - 33737 - PORT_TEMPLATE - server - </log>
 <log>Port_template must be for 'Cisco_IOS' of client_type
'ServiceProvider'</log>
 <log>execution line 4</log>
 <log>4 parsed: ASSIGN - PORT - <port> - PORT_SPEED - 1000 -
</log>
 <log>4 alias resolve: '<port>' as '33737'</log>
 <log>4 exec: ASSIGN - PORT - 33737 - PORT_SPEED - 1000 - </log>
 <log>execution line 5</log>
 <log>5 parsed: ASSIGN - PORT - <port> - PORT_MODE - Full -
</log>
 <log>5 alias resolve: '<port>' as '33737'</log>
 <log>5 exec: ASSIGN - PORT - 33737 - PORT_MODE - Full - </log>
 <log>execution line 6</log>
 <log>6 parsed: ASSIGN - PORT - <port> - PORT_SHUT - N - </log>
 <log>6 alias resolve: '<port>' as '33737'</log>
 <log>6 exec: ASSIGN - PORT - 33737 - PORT_SHUT - N - </log>
 <log>Done 6/6</log>
 </response>
</task>

Job execution

Command job

A command job is a generic tool to execute changes in the network. These changes are prepared in
YCE using either the client(s) or remotely using the XCH Service task method. Once the modeled
network has the desired change(s) incorporated, the operators prepare the jobs required to provision
the network using the appropriate tasks and scenarios.

A range of tools is available for the operator to create these jobs. The Command job is the most
versatile of these. The XCH Command_job task is its equivalent for remote use.

Standardized changes are available as “Stored jobs”, requiring only the device (node) selection and
the stored_job name. For non-standard jobs, the complete set of commands (or template names) can
be specified in the job request. The same is true for the desired scenario: it is either defined in the
stored job or can be defined in the job request (step by step or by task name).

The job request example below uses the full version where all available options are defined. Note that
here a stored_job_name is still defined although both command section and scenario sections are
provided. In these cases the stored job functions as the default should one of these sections be left
blank.

Because the commands and scenario sections support the full set of template and scenario syntaxes
for parameter substitution and conditionals, a potential conflict in XML and YCE syntax arises.
Encapsulating the actual scenario and commands in a CDATA construct circumvents this.

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

https://wiki.netyce.com/ Printed on 2025/07/11 17:31

<task response="">
 <head
 passwd="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 req_app="my_command_job"
 req_host="genie"
 task_name="command_job"
 task_type="xml_request"
 userid="loginid"
 />
 <request
 node_name="TESTRN01001"
 client_type=""
 site_code=""
 client_code="1006"
 stored_job_name="Default command job"
 sched_day="tomorrow"
 sched_time="5:05"
 sched_now="no"
 sched_queue="yce"
 verbose_log="yes"
 >
 <commands>
<![CDATA[
! Change enable from '<Enable_secret>' to '<Default_enable_secret>'
enable secret <Default_enable_secret>
!
]]>
 </commands>
 <scenario>
<![CDATA[
Description <node> Enable secret update

Import_cfg -q -n <node> -f <node>.cmd <verbose>
if Error
 LogAction -n <node> -a Command_job -m 'Job failed updating enable
secret'
 stop
endif

Db_update -t SiteRouter -f Enable_secret -v '<Default_enable_secret>' -w
Hostname='<node>'

Logaction -n <node> -a Enable_secret -m '<Enable_secret> =>
<Default_enable_secret>'
LogAction -n <node> -a Command_job -m 'Job completed updating enable secret'
]]>
 </scenario>
 </request>
</task>

2025/07/11 17:31 9/21 YCE Exchange gateway and API

Technical documentation - https://wiki.netyce.com/

The job request above is listing the full version, not using any defaults. In the request below, most of
the defaults are used, only the host_name and the commands are specified. In this case the scenario
used is the “Default command job”. In this case it is demonstrated that the use of the <![CDATA[…
]]> encapsulation can be avoided by converting the ‘<’ and ‘>’ to < en > respectively.

The default schedule time is ‘tomorrow 05:05’. Other defaults are ‘verbose_log=”yes”’ and
‘sched_now=”no”.

<task response="">
 <head
 passwd="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 task_name="command_job"
 task_type="xml_request"
 userid="loginid"
 />
 <request
 node_name="TESTRN01001"
>
 <commands>
!
my hostname is <hostname>
!
|hostname = 'testrn01001'|yes i'm <hostname>
!
 </commands>
 </request>
</task>

Sample response (full):

<task>
 <head
 error="0000"
 passwd="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 sched_status="client John Doe (operator) registered"
 status="completed"
 task_name="command_job"
 task_type="xml_request"
 user_func="Operator"
 user_level="6"
 user_name="John Doe"
 userid="loginid"
 />
 <request
 auth_agent="yce"
 client_level="5"
 commands="
 ! my hostname is <hostname>
 !
|hostname = 'testrn01001'|yes i'm <hostname>
 !"

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

https://wiki.netyce.com/ Printed on 2025/07/11 17:31

 group_id="NetYCE"
 node_name="TESTRN01001"
 operator="myuserid"
 sched_day="tomorrow"
 sched_time="05:05"
 stored_job_description="Issue parameterized commands to the selected
nodes"
 stored_job_name="Default command job"
 task_module="xch_jobs.pl"
 task_sub="command_job"
 user_level="3"
 verbose_log="yes"
 />
 <response
 client_code="1006"
 client_type="RN"
 commands="
 ! my hostname is <hostname>
 !
|hostname = 'testrn01001'|yes i'm <hostname>
 !"
 job_descr=" ..."
 jobid="0913_0002"
 node_fqdn="testrn01001.netyce.net"
 node_name="TESTRN01001"
 node_type="RN+_3560G-48_DCoreHK"
 scenario="
 Description <node>
 Command_job... task = Command_job "
 sched_job="Sat 14-Sep-2013 05:05:00"
 sched_queue="yce"
 sched_req="tomorrow 05:05"
 site_code="TESTRN01"
 vendor_type="Cisco_IOS"
 verbose_log="-v"
 />
</task>

Parameters for a stored_job_name

When using a stored_job additional parameters may be provided. These will be treated as if they were
parameters provided in the stored job '[parameter]' section.

NOTE: They will not override existing set values!

<task>
 <head abort_on_error="1"
 passwd="password"

2025/07/11 17:31 11/21 YCE Exchange gateway and API

Technical documentation - https://wiki.netyce.com/

 req_app="/opt/yce/operate/command_job.pl"
 req_host="server"
 request_id="1"
 task_name="command_job"
 task_type="xml_request"
 userid="username"
 usr_type="local"
 xml_decode="yes" />

 <request
 change_id=""
 client_type=""
 commands=""
 description=""
 evaluate="no"
 node_name="your_node"
 sched_day="tomorrow"
 sched_epoch=""
 sched_now="yes"
 sched_queue="yce"
 sched_server="server"
 sched_time="5:05"
 stored_job_name="your_stored_job"
 verbose_log="yes"
 scenario="">
 <parameters parameter1="value1"
 parameter2="1100"
 some_name="2200"
 />
 <xml_decode>scenario</xml_decode>
 </request>
</task>

Basic Command job

The basic command job API call is exactly the same as the Command_job except for the task_name.

task_name is set to 'basic_command_job'

A basic command job can point to both CMDB nodes (the default) or YCE nodes.

Job status

The results of any job can be retrieved using it’s jobID. While the job is in RUNNING state, the details
will keep pace with its progress. The job results can be retrieved from any YCE server once it has
become active.

<task response="">
 <head

https://wiki.netyce.com/doku.php?id=guides:reference:api:api#command_job

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

https://wiki.netyce.com/ Printed on 2025/07/11 17:31

 passwd="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 task_name="job_status"
 task_type="xml_request"
 userid="loginid"
 />
 <request
 jobid="0912_0022"
 />
</task>

Sample response (full):

<task>
 <head
 error="0000"
 passwd="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 status="completed"
 task_name="job_status"
 task_type="xml_request"
 userid="loginid"
 />
 <request
 auth_agent="yce"
 jobid="0912_0022"
 status_timestamp="2013-09-13 14:32:22"
 task_module="xch_jobs.pl"
 task_sub="job_status"
 user_level="3"
 xch_server="genie"
 />
 <response
 job_state="ABORTED"
 jobid="0912_0022"
 log_details="0912_0022 2013-09-12 16:20:01 Command_job on
TESTRN01001
 Tasks: Command_job 03-Import_cfg (-q -n TESTRN01001 –f TESTRN01001.cmd
-v)
 00-ARGUMENTS
 Command: import
 Starting import on TESTRN01001
 Session stopped
 Node TESTRN01001 is unreachable at 10.10.62.192.
 Aborted 2013-09-12 16:20:09 10.34.62.192 finished with Errors
 ERROR import_cfg failed: Node TESTRN01001 is unreachable at
10.10.62.192.
 Aborted 05-Logaction (-n TESTRN01001 -a Command_job -m "
 Failed executing commands")
 06-Stop ()
 2013-09-12 16:20:09 ABORTED after 8 seconds "

2025/07/11 17:31 13/21 YCE Exchange gateway and API

Technical documentation - https://wiki.netyce.com/

 log_head="0912_0022 2013-09-12 16:20:01 TESTRN01001 Command_job..."
 log_info="TESTRN01001 Command_job..."
 log_server="genie"
 log_tail="0912_0022 2013-09-12 16:20:09 ABORTED after 8 seconds "
 log_timestamp="2013-09-12 16:20:09"
 operator="NetYCE support"
 />
</task>

If the job exists, but waits execution by the scheduler, there are no job results as yet, but schedule
information can be retrieved if the XCH request was directed at the server where the job was
scheduled.

The results for a job scheduled, but not yet active:

<task>
 <head
 error="0000"
 passwd="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 status="completed"
 task_name="job_status"
 task_type="xml_request"
 userid="loginid"
 />
 <request
 auth_agent="yce"
 jobid="0913_0002"
 task_module="xch_jobs.pl"
 task_sub="job_status"
 user_level="3"
 />
 <response
 job_status="SCHEDULED"
 jobid="0913_0002"
 log_info="TESTRN01001 Command job ..."
 operator="John Doe"
 sched_job="Sat 14-Sep-2013 05:05:00"
 sched_queue="yce"
 sched_start=""
 />
</task>

Reports

Fetch report

Previously generated custom reports can be retrieved using the API. The filename or query name is
the only required attribute to fetch the CSV report and have it converted to XML.

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

https://wiki.netyce.com/ Printed on 2025/07/11 17:31

using the URL

All reports are created in a CSV format and are converted to html (when viewing) or XML (for the API)
when needed. If the original CSV is required, the download link is included when viewing the report.
Generated reports can be downloaded as a CSV file directly using the URL below. Note that the file
path is case sensitive but the report-name is not. To download the file using Dos formatting append
&type=dos to the url.

Created reports are deleted automatically after 30 days, or the period in days defined by the Lookup
tweak 'Age_custom_reports'.

https://<netyce.server>/report/<report-name>

using XCH API

To retrieve the CSV report in XML format using the API, the fetch_report request can be used. The
report_name attribute of the fetch_report request can contain:

the case-insensitive custom report name
the path and filename of the custom report csv file

The latter format ('report_name=“/var/opt/yce/output/my-report-name.csv”') is supported for historic
reasons only. When using this format, the report-name is extracted from the argument and its results
retrieved from the database, if located.

If the report settings indicate it may not be overwritten, the resulting report-name has the date
appended (format: '<myreport>-yyyymmdd'). The report_name should then also include this date
for the desired report. If the report-name has no date appended, the latest generated (dated) report
will be returned.

Sample request:

<task response="">
 <head
 userid="my-login-id"
 passwd="xx"
 task_type="xml_request"
 task_name="fetch_report"
 />
 <request
 report_name="supernet_usage"
 />
</task>

The request resulted in the response below. Note that each row in the report is represented as a hash
keyed with row_nnn where the nnn is the row number. The row number is padded with an
appropriate number of zeros to allow alphanumeric sorting.

2025/07/11 17:31 15/21 YCE Exchange gateway and API

Technical documentation - https://wiki.netyce.com/

Included are the timestamp of the generated report, as is the number of rows. The report columns are
listed in their original (sql) order under the key cols.

Column names starting with a digit that do not comply with the XML tag-formats will be automatically
protected by prepending the string _x_ (e.g. column '1st' will be named '_x_1st' because it starts with
a number).

<task>
 <head error="0000" passwd="xx"
status="completed" task_id="0121_0006" task_name="fetch_report"
task_type="xml_request" userid="my-login-id">
 <logs>
 <log>Read and converted csv report 'Supernet_usage' on 'yceone'</log>
 </logs>
 </head>
 <request auth_agent="yce" report_name="supernet usage"
task_module="xch_system.pl" task_sub="fetch_csv" user_level="2" />
 <response file_date="2019-01-10 04:05:02" report_name="supernet_usage"
file_name="Supernet_usage-20190110" query_name="Supernet_usage" rows="12">
 <cols>Ip_supernet</cols>
 <cols>Net_name</cols>
 <cols>Net_index</cols>
 <cols>ClientCode</cols>
 <cols>SiteCode</cols>
 <cols>Net_address</cols>
 <cols>Net_size</cols>
 <cols>Service_type</cols>
 <row_01 ClientCode="1476" Ip_supernet="10.21.0.0"
Net_address="10.21.63.192" Net_index="0" Net_name="Inrol" Net_size="30"
Service_type="ML31_Core_5800-24" SiteCode="BEEKRN02" />
 <row_02 ClientCode="1476" Ip_supernet="10.21.0.0"
Net_address="10.21.63.204" Net_index="3" Net_name="Inrol" Net_size="30"
Service_type="ML31_Core_2x5800-24" SiteCode="STD-RN01" />
 <row_03 ClientCode="1476" Ip_supernet="10.21.0.0"
Net_address="10.21.63.208" Net_index="4" Net_name="Inrol" Net_size="30"
Service_type="ML31_Core_5800-24" SiteCode="BORNRN01" />
 <row_04 ClientCode="1476" Ip_supernet="10.21.0.0"
Net_address="10.21.63.212" Net_index="5" Net_name="Inrol" Net_size="30"
Service_type="ML31_Core_5800-24" SiteCode="STD-RN03" />
 <row_05 ClientCode="1476" Ip_supernet="10.21.0.0"
Net_address="10.21.9.128" Net_index="3" Net_name="IPT" Net_size="25"
Service_type="ML31_Core_5800-24" SiteCode="BORNRN01" />
 <row_06 ClientCode="1476" Ip_supernet="10.21.0.0"
Net_address="10.21.48.0" Net_index="0" Net_name="IPT_srv" Net_size="27"
Service_type="ML31_Core_5800-24" SiteCode="STD-RN03" />
 <row_07 ClientCode="1476" Ip_supernet="10.21.0.0"
Net_address="10.21.48.128" Net_index="4" Net_name="IPT_srv" Net_size="27"
Service_type="ML31_Core_5800-24" SiteCode="BORNRN01" />
 <row_08 ClientCode="1476" Ip_supernet="10.21.0.0"
Net_address="10.21.63.12" Net_index="3" Net_name="p2p" Net_size="30"
Service_type="ML31_Core_DBC" SiteCode="BORNRN01" />

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

https://wiki.netyce.com/ Printed on 2025/07/11 17:31

 <row_09 ClientCode="1476" Ip_supernet="10.21.0.0"
Net_address="10.21.47.0" Net_index="0" Net_name="Servers_bk" Net_size="28"
Service_type="ML31_Core_5800-24" SiteCode="BEEKRN02" />
 <row_10 ClientCode="1476" Ip_supernet="10.21.0.0"
Net_address="10.21.47.64" Net_index="4" Net_name="Servers_bk" Net_size="28"
Service_type="ML31_Core_5800-24" SiteCode="BORNRN01" />
 <row_11 ClientCode="1476" Ip_supernet="10.21.0.0"
Net_address="10.21.47.80" Net_index="5" Net_name="Servers_bk" Net_size="28"
Service_type="ML31_Core_5800-24" SiteCode="STD-RN03" />
 <row_12 ClientCode="1476" Ip_supernet="10.21.0.0"
Net_address="10.21.4.0" Net_index="8" Net_name="Users" Net_size="25"
Service_type="ML31_Core_5800-24" SiteCode="BORNRN01" />
 </response>
</task>

Run report

Similar to fetch_report, the run_report XCH request runs the custom report before downloading
it in XML format. The request is identical, save for the task_name attribute which must read
run_report. The request section has only one attribute, report_name, that holds the name of an
existing custom report.

Since custom reports can be defined not to overwrite any results from previous days, the resulting csv
report will have the date appended to the report name ('<report_name>-YYYYMMDD.csv'). When
executing and fetching these reports using this call, a possibly existing file will be overwritten with
todays date.

The response message will be identical to the fetch_report call.

Sample request:

<task response="">
 <head
 userid="my-login-id"
 passwd="xx"
 task_type="xml_request"
 task_name="run_report"
 log_level="1"
 />
 <request
 report_name="supernet_usage"
 />
</task>

2025/07/11 17:31 17/21 YCE Exchange gateway and API

Technical documentation - https://wiki.netyce.com/

Infoblox DNS

IPAM and DNS report

» This section has been replaced by the article on the Infoblox DNS API plugin.

Infoblox DNS registration

» his section will shortly be replaced by the article on the Infoblox DNS API plugin.

Add Host

The add_host request finds and allocates an IP-address for a new host name in a pre-existing zone. A
free IP-address is located in the included set of IPAM subnets where ‘free’ means no that DNS entry
exists, nor is part of DHCP range. A new ‘Host’-type DNS record is created by default, or an A-record if
specified. When aliases are specified, those are added to the host record or created as Cname-records
as is appropriate.

<task response="">
 <head
 passwd="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 task_name="infoblox_dns"
 task_type="xml_request"
 userid="myuserid"
 />
 <request action_type="Add_host">
 <host
 comment="RFC 1234"
 host_domain="existing.zone.name"
 host_name="my-new-host"
 record_type="host"
 request_id="101"
 >
 <subnet_addr>10.16.238.0/25</subnet_addr>
 <subnet_addr>10.16.239.0/28</subnet_addr>
 <alias>new-host-alias1.existing.zone.name</alias>
 <alias>new-host-alias2.another.zone.name</alias>
 </host>
 </request>
</task

The changes are directly made to the life DNS GridMaster. The allocated ip-address and the registered
DNS entry is returned. The task rejects non-existing zones and applies restrictions on the hostnames;
e.g. no dotted hosts, hosts starting with a numeric digit or the use of underscores.

In the request, the host name and zone can be provided as two attributes ‘host_name’ and

https://wiki.netyce.com/doku.php?id=guides:reference:infoblox:plugin_infoblox_dns
https://wiki.netyce.com/doku.php?id=guides:reference:infoblox:plugin_infoblox_dns

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

https://wiki.netyce.com/ Printed on 2025/07/11 17:31

‘host_domain’, but also combined as a single attribute ‘host_fqdn’. When borh are provided, the
‘host_fqdn’ takes precedence.

Multiple host requests may be included in the task. Each is expected to have a unique request_id
(within the task). These hosts are processed in sequence before the task responds.

Add alias

The add alias request updates an existing host record to include the aliases listed in the request.
Existing or overlapping aliases are ignored. The response lists the resulting set of aliases. When no
aliases are provided in the request, the existing set of aliases for this host are listed.

<task response="">
 <head
 passwd="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 task_name="infoblox_dns"
 task_type="xml_request"
 userid="myuserid"
 />
 <request action_type="Add_alias">
 <host
 comment="Dummy RFC 1234"
 host_domain="a1006.some.zone"
 host_name="te--rn01003"
 request_id="101"
 >
 <alias>te--rn01003b.some.other.zone</alias>
 <alias>te--rn01003c.some.zone</alias>
 </host>
 </request>
</task>

Clear alias

The clear_alias request updates an existing host record to remove the aliases listed in the request.
Existing aliases named in the request are removed, others ignored. The response lists the resulting
set of aliases. When no aliases are provided in the request, the existing set of aliases for this host are
listed.

<task response="">
 <head
 passwd="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 task_name="infoblox_dns"
 task_type="xml_request"
 userid="myuserid"
 />
 <request action_type="Clear_alias">

2025/07/11 17:31 19/21 YCE Exchange gateway and API

Technical documentation - https://wiki.netyce.com/

 <host
 comment="Dummy RFC 1234"
 host_domain="a1006.some.zone"
 host_name="te--rn01003"
 request_id="101"
 >
 <alias>te--rn01003b.some.other.zone</alias>
 <alias>te--rn01003c.some.zone</alias>
 </host>
 </request>
</task>

Clear host

The clear host request removes the host record including all its ip-addresses and aliases if it is a host-
record. When the DNS name belongs to an A-record or Cname, the appropriate record is removed
from the DNS.

<task>
 <head
 passwd="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 task_name="infoblox_dns"
 task_type="xml_request"
 userid="myuserid"
 />
 <request action_type="Clear_host">
 <host
 comment="Dummy RFC 1234"
 host_domain="a1006.some.zone"
 host_name="te--rn01003"
 request_id="101"
 >
 </host>
 </request>
</task>

Infoblox IPAM and DHCP

Client IPAM tree and DHCP configuration

The IPAM and DHCP report is used to feed an IPAM and/or DHCP configuration tool. YCE includes such
a tool for Infoblox where this report is used internally, but is also used externally.

The report requires the name (ClientCode) of an YCE-client that is fully modeled and uses the YCE ip-
plan(s). Combined with the information found in an IPAM definition table within YCE, a report is
generated where both the IPAM subnet tree and the associated DHCP scopes are fully defined. The
DHCP definition includes the (customer defined) options and their calculated values.

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

https://wiki.netyce.com/ Printed on 2025/07/11 17:31

The intended use for the report is to automate the (Infoblox) IPAM subtree’s en DHCP scope
provisioning. When, for example, an operator adds a new location or some devices requiring ip-
subnets, these are automatically assigned using the YCE ip-plans for this customer and used in the
respective configurations. Next, the operator initiates the IPAM/DHCP update function for this
customer which results in having the assigned subnets added to the IPAM tree, but also activating the
required DHCP scopes including all their options. Similarly, when removing or freeing a subnet, the
same process removes both DHCP definitions and returns the subnet to the ‘free’ pool.

IPAM/DHCP tree

This report can also be extended to include the IPAM trees of all clients in a client type.

<task>
 <head
 passwd="xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"
 task_name="infoblox_dhcp"
 task_type="xml_request"
 userid="loginid"
 />
 <request
 client="1005"
 client_type=""
 />
</task>

Sample report - below a single subnet record out of tens of thousands:

<tree
 ddns="no"
 line_number="110"
 net_address="10.25.236.0"
 net_mask="255.255.255.224"
 net_name="Wifi_ap 0"
 net_options="1,15,43,44,46,60,241"
 net_size="27"
 net_tier="2"
 net_type="network"
 site_type=""
>
 <net_members>10.10.254.26</net_members>
 <net_members>10.10.254.58</net_members>
 <option
 option_name="subnet-mask"
 option_number="1" option_val="255.255.255.224"
 />
 <option
 option_name="domain-name"
 option_number="15"

2025/07/11 17:31 21/21 YCE Exchange gateway and API

Technical documentation - https://wiki.netyce.com/

 option_val="netyce.net"
 />
 <option
 option_name="vendor-encapsulated-options"
 option_number="43"
 option_val="F1:04:0A:0C:10:3C"
 />
 <option
 option_name="netbios-name-servers"
 option_number="44"
 >
 <option_val>10.233.18.77</option_val>
 </option>
 <option
 option_name="netbios-node-type"
 option_number="46"
 option_val="2"
 />
 <option
 option_name="vendor-class-identifier"
 option_number="60"
 option_val="Cisco AP c1140"
 />
 <option
 option_name="WLC-Servers"
 option_number="241"
 option_space="WiFi"
 >
 <option_val>10.12.16.60</option_val>
 </option>
</tree>

From:
https://wiki.netyce.com/ - Technical documentation

Permanent link:
https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

Last update: 2024/07/03 12:31

https://wiki.netyce.com/
https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

	YCE Exchange gateway and API
	Authorization
	Implementation
	XCH configuration

	XCH Transaction types
	Service type execution
	Service task
	Custom variables
	Retrieving information

	Job execution
	Command job
	Parameters for a stored_job_name

	Basic Command job
	Job status

	Reports
	Fetch report
	using the URL
	using XCH API

	Run report

	Infoblox DNS
	IPAM and DNS report
	Infoblox DNS registration
	Add Host
	Add alias
	Clear alias
	Clear host

	Infoblox IPAM and DHCP
	Client IPAM tree and DHCP configuration
	IPAM/DHCP tree

