2026/01/16 09:21 1/21 YCE Exchange gateway and API

YCE Exchange gateway and API

The YCE exchange gateway is intended for integrations with north-bound systems although it can also
be used to interface with peer systems. The gateway is an XML based request-response system where
YCE can be instructed to perform an action or deliver information.

Several types of integrations have been realized to date and due to its highly flexible and extensible
implementation, capable to include many custom or future functions. It functions include those of the
YCE product's API.

At the core, each YCE server has a service running to accept incoming requests to execute specific
tasks. These tasks can be specific to YCE or customer specific. YCE API functions available include the
preparation of (standardized) changes (e.g. adding new devices, setting up services, manipulating
topology) as well as the scheduling of the provisioning of these changes and their monitoring.
Customer specific functions allow for the interaction with YCE-connected systems like Infoblox to
perform IPAM, DNS and DHCP tasks.

Authorization

The request header requires both a userid and a passwd. The userid must match one of the local
user-id's (not Idap!) or may be xch which is a built-in userid for the API only.

The password may be cleartext (not advised), the md5-hash from the NetYCE YCE.Users.Passwd
column, or the des3 encrypted password that can be generated using the cli tool
/opt/yce/system/api _crypt.sh

The md5-hash taken from the indicated table cannot be self-generated since it is a hash created using
a concatenation of the userid and a secret realm string.

Implementation

The Exchange or APl system consists of two parts, a daemon and a series of plugins.

First there is the xch-daemon that permanently runs in the background to accept new requests from
remote systems using the network. It listens to port 8888 by default and is available on any of the
YCE servers of its implementation.

The daemon can accept tcp socket calls over which it receives the request in XML format directly, but
the method used most widely is the HTTP POST. In this case the XML formatted request will be issued

as a parameter of the POST. During the processing of the request the network connection is kept alive
until a response is sent. Depending on the transaction type, the response is available immediately or

can take several minutes.

The Exchange daemon is multi-threaded so that requests are processed in parallel. Up to 30 requests
can be executed in parallel, any additional requests are queued until a slot is available. During the
queuing the connection remains open. From issuers perspective these calls are identical, just take a
little longer.

Technical documentation - https://wiki.netyce.com/

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

The second part of the exchange gateway are the plugins. These plugins provide the actual
implementation of the request and are therefore highly modular and easily extensible. Most of the
integrations between NetYCE and external NMS systems to date are using xch-plugins. Also the
various NetYCE API functions are realized as an xch-plugin.

The plugins currently available:

e NetYCE command jobs - xch_jobs

NetYCE Service type and service task launcher - xch_st

NetYCE NCCM function - xch_nccm

NetYCE system maintenance functions - xch_system

Infoblox IPAM and DHCP provisioning - xch_ib_dhcp

Infoblox DNS provisioning - xch_ib_dns

Other modules are customer specific and deal with Maintenance Event suppression, Event
Enrichment and CMDB updates.

XCH configuration

Exchange plugins are registered in a configuration file, /opt/yce/etc/xch tasks.ini This file is
read by the xch daemon and maps the incoming request task-name to the plugin module and the
function name.

system status
auth_agent = internal
user level 5

task module = xch system
task sub = system status

system fput
auth_agent = internal
user level 5
task module = xch system
task sub = fput

system get
auth agent internal
user level 5
task module = xch system
task sub = fget

In the section above of the ini-file, three different tasks are exposed to the the xch server from the
same module: system status, system_fput and system_get. All three are intended for internal use
only, which is reflected in the authorization agent that is to be used in these tasks. The plugin module
is 'xch_system' from which three different functions (subroutines) are called. The value for user-level
refers to the authorization and the minimum user role that is required.

command_job
auth _agent = yce

https://wiki.netyce.com/ Printed on 2026/01/16 09:21

2026/01/16 09:21 3/21 YCE Exchange gateway and API

user level = 2
task module = xch jobs
task sub = command job

job status

auth agent = yce

user level = 3

task module = xch jobs
task sub = job status

In this example the command jobs are made accessible through the API. The submission of a job and
the retrieval of the job-status are registered in the plugin module xch jobs, both requiring a level
three authorization using the normal yce user administration.

XCH Transaction types

Service type execution

Service task

Part of the YCE modeling is defined in Service types. A Service type mirrors in high detail the actions a
designer performs when defining how a device must be connected or a service implemented. The
process can be visualized as making a drawing of the design where nodes are added, lines are drawn,
ports are assigned, vlans created and addresses mapped.

YCE uses Service types to define the standardized actions and have them executed by engineers or
operators where the design (as modeled) allows them to do so. In this way a single click can result in
an entire device layer be added and properly hooked up to the core devices, including all
(management) IP addresses, vlan setup and port configurations of all devices involved.

The XCH Service task request allows remote systems to initiate the execution of a Service type (or
service task). An example of such a xml request is shown below. The set of attributes provided is
highly customizable. In the case below, the minimal set is used.

<task response="">

<head
pas swd="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX "
task name="service type"
task type="xml request"
userid="1loginid"

/>

<request
client type="SAM"
service class="Core"
service type="SAM c6509 core"
service task="Create"
client code="SAM1"

Technical documentation - https://wiki.netyce.com/

Last
update:
2024/07/0
12:31

3 guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

site code="SAM1-BRO1"
/>
</task>

Custom variables

In extension of the Service type above, custom variables can be inserted in the Service type using the
API. The value parameter in most Service type records that make up a Service type can be supplied
by the API.

The variable names of these custom variables in the API call can either be chosen freely or are pre-
defined, depending on how the Service type was defined. If the designer of the service types used
brackets, (), around the names in the Value parameter, that value MUST be provided by the API
using that name as the custom name.

i dLLEDD Y IWILD_MLLEIDU_£ADI0U=0 el Edie i
RN api api addCustomNet 3

nag Durs 11 TTE Y 11 D..oren Ao = . oo

+ @ A~ © Duplicate

Seq Exec Class Scope Match Value Alias

2 LOCATE PORT <nodeA> PORT_NAME (port_nameA) <portA>

3 LOCATE NODE GLOBAL NODE_NAME (node_nameB) <nodeB>

E LOCATE PORT <nodeB> PORT_NAME (port_nameB) <portB>

5 ADD LINK <portA> PORT <portB> <linkAB>

6 ASSICGN PORT <portA> PORT_CHANNEL (port_chanA)

7 ASSIGN PORT <portB> PORT_CHANNEL 21

8 ASSICN PORTS <linkAB> PORT_SHUT N
+ @ t 4
Seq 1 Exec LOCATE + | Class NODE =
Scope GLOBAL + | Match NODE_MAME v Value (node_nameA) -
Mote find node using its name. Supports wildcard Alias <nodeA>

The Service type as defined above will need to be called by the API using the request below:

<task>
<head passwd="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX "
task name="service type" task type="xml request" userid="loginid" />
<request
client type="SAM"
service class="api"
service task="addLink"
service type="api"

<custom name="node nameA" type="name" value="TE--RNO10O1l" />
<custom name="node nameB" type="name" value="TE--RN02002" />
<custom name="port nameA" type="name" value="GiOl" />
<custom name="port nameB" type="name" value="GIO3" />
<custom name="port chanA" type="name" value="11" />

<custom name="port chanB" type="name" value="22" />

https://wiki.netyce.com/ Printed on 2026/01/16 09:21

2026/01/16 09:21 5/21 YCE Exchange gateway and API

<custom name="port mode" type="name" value="Auto" />
<custom name="port shut" type="name" value="N" />
<custom name="port speed" type="name" value="Auto" />
</request>
</task>

This method provides exact control over which API variable gets used in each of the Service type
records, but will not allow the Service type to be used without the API.

A set of reserved names can be used where such a mix of APl and front-end usage of the Service
types is required. The service types can be designed including valid values but can be replaced by
providing a reserved custom variable if provided by the API call. The variable names are named after
their obvious use: client code, site code, node name, port name, template,

port channel, port shut, etc. Actually, the example above already includes two of these to
override the values provided in its last two lines.

Retrieving information

The Service types API also allows to retrieve information from the NetYCE network model. In the
Service type, 'Added' objects and 'Located' objects are often manipulated using an 'Alias'. The
operator chooses relevant names for these objects to clearly identify them. Each of these aliased
NetYCE objects consists of a data-type that has a set of attributes. These Objects including all their
attributes can be returned in the API response by setting a flag in the Service type API request.

By setting Log_aliases to yes in the API request, all aliases used in the Service type are reported in
full. Since many of the Objects include Custom Attributes, these are included in the data-set.

As an example, consider a Service type where a Node is located using Client_code and Site_code. The
following XML call will retrieve the Client, Site, and Node data-sets.

<task response="">
<head passwd="XXXXXXXXXXXXXXXXX" task name="service type"
task type="xml request" userid="loginid" />
<request
client type="ServiceProvider"
service class="SP core"
service task="serverport"
service type="api"
log aliases="yes">
<custom name="Hostname" type="name" value="nodel2" />
</request>
</task>

<task>
<head abort on error="1" error="0" log level="0" passwd="XXXXXXXXXXXXXX"
req _host="::ffff:192.168.56.1" status="completed" task id="0716 0021"
task level="4" task name="service type" task type="xml request"”
userid="loginid">
<logs/>
</head>

Technical documentation - https://wiki.netyce.com/

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

<request
client type="ServiceProvider
log aliases="yes"
request id="1"
service class="SP core"
service task="serverport"
service type="api">
<custom name="Hostname" type="name" value="nodel2"/>
</request>
<response client type="ServiceProvider" log aliases="yes"
request error="0" request id="1" request status="completed"
service class="SP core" service task="serverport" service type="api'>
<alias name="&1lt;node>" type="node" value="nodel2"/>
<alias name="<port>" type="port" value="33737"/>
<alias records>
<node Boot loader="" Boot system="" ClientCode="ServiceProvider"
Console line="0" DeviceStatus="2" Domain="SP" Enable secret="cisco"
Hostname="nodel2" NodeType="0" Node class="core"
Node fqdn="nodel2.tmobile.local" Node position="NA" Node type="c3925"
Orig node="" Par group="Node" Redundant="1" Rtr notes="" Service key="20493"
Sid="36883" SiteCode="core" Template="c3925" Template rev=""
Terminal server="" Var name="" Var value="" Vendor type="Cisco I0S"/>
<port Bandwidth down="" Bandwidth profile="" Bandwidth up=""
Chan_id="" Hostname="nodel2" If name="GigabitEthernet0/0/2"
Interface id="33737" Port class="Gi" Port description="Server template"
Port _id="2" Port mode="Full" Port module="" Port name="Gi00/00/02"
Port reservel="" Port reserve2="" Port reserve3="" Port shut="N"
Port speed="1000" Port template="server" Port type="GigabitEthernet" Sid="0"
Slot id="0/0" Sys slot="" Timestamp="2018-07-16 16:39:17"/>
</alias records>
<custom name="Hostname" type="name" value="nodel2"/>
<log>Passl: syntax check completed</log>
<log>Pass2: execution</log>
<log>execution line 1l</log>
<log>1 parsed: LOCATE - NODE - GLOBAL - NODE NAME - (Hostname) -
<node></log>
<log>1 custom resolve: 'node name/(hostname)' as 'nodel2'</log>
<log>1 exec: LOCATE - NODE - GLOBAL - NODE NAME - nodel2 -
<node></log>
<log>set alias '<node>' to 'nodel2' as 'node'</log>
<log>execution line 2</log>
<log>2 parsed: LOCATE - PORT - <node> - PORT _TEMPLATE FIRST -
int unused - <porté></log>
<log>2 alias resolve: '<node>' as 'nodel2'</log>
<log>2 exec: LOCATE - PORT - nodel2 - PORT TEMPLATE FIRST -
int unused - <porté></log>
<log>set alias '<port>' to '33737' as 'port'</log>
<log>execution line 3</log>
<log>3 parsed: ASSIGN - PORT - <port> - PORT TEMPLATE - server

https://wiki.netyce.com/ Printed on 2026/01/16 09:21

2026/01/16 09:21 7/21 YCE Exchange gateway and API

- </log>
<log>3 alias resolve: '<port>' as '33737'</log>
<log>3 exec: ASSIGN - PORT - 33737 - PORT TEMPLATE - server - </log>
<log>Port template must be for 'Cisco IO0S' of client type
'ServiceProvider'</log>
<log>execution line 4</log>
<log>4 parsed: ASSIGN - PORT - <port> - PORT _SPEED - 1000 -

</log>
<log>4 alias resolve: '<port>' as '33737'</log>
<log>4 exec: ASSIGN - PORT - 33737 - PORT SPEED - 1000 - </log>
<log>execution line 5</log>
<log>5 parsed: ASSIGN - PORT - <port> - PORT MODE - Full -
</log>

<log>5 alias resolve: '<port>' as '33737'</log>
<log>5 exec: ASSIGN - PORT - 33737 - PORT MODE - Full - </log>
<log>execution line 6</log>
<log>6 parsed: ASSIGN - PORT - <port> - PORT SHUT - N - </log>
<log>6 alias resolve: '<port>' as '33737'</log>
<log>6 exec: ASSIGN - PORT - 33737 - PORT SHUT - N - </log>
<log>Done 6/6</lo0g>
</response>
</task>

Job execution

Command job

A command job is a generic tool to execute changes in the network. These changes are prepared in
YCE using either the client(s) or remotely using the XCH Service task method. Once the modeled
network has the desired change(s) incorporated, the operators prepare the jobs required to provision
the network using the appropriate tasks and scenarios.

A range of tools is available for the operator to create these jobs. The Command job is the most
versatile of these. The XCH Command_job task is its equivalent for remote use.

Standardized changes are available as “Stored jobs”, requiring only the device (node) selection and
the stored_job name. For non-standard jobs, the complete set of commands (or template names) can
be specified in the job request. The same is true for the desired scenario: it is either defined in the
stored job or can be defined in the job request (step by step or by task name).

The job request example below uses the full version where all available options are defined. Note that
here a stored_job_name is still defined although both command section and scenario sections are
provided. In these cases the stored job functions as the default should one of these sections be left
blank.

Because the commands and scenario sections support the full set of template and scenario syntaxes
for parameter substitution and conditionals, a potential conflict in XML and YCE syntax arises.
Encapsulating the actual scenario and commands in a CDATA construct circumvents this.

Technical documentation - https://wiki.netyce.com/

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

<task response="">
<head

PassSWd="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX "
req_app="my_ command job"

req_host="genie"

task name="command job"

task type="xml request"

userid="1loginid"

/>
<request
node name="TESTRNO1001"
client type=""
site code=""
client code="1006"
stored_job name="Default command job"
sched day="tomorrow"
sched time="5:05"
sched now="no"
sched queue="yce"
verbose log="yes"
>
<commands>
<! [CDATA[

I Change enable from '<Enable secret>' to '<Default enable secret>'
enable secret <Default enable secret>
|
11>
</commands>
<scenario>
<! [CDATA[
Description <node> Enable secret update

Import cfg -q -n <node> -f <node>.cmd <verbose>
if Error
LogAction -n <node> -a Command job -m 'Job failed updating enable
secret’
stop
endif

Db update -t SiteRouter -f Enable secret -v '<Default enable secret>' -w
Hostname='<node>'

Logaction -n <node> -a Enable secret -m '<Enable secret> =>
<Default enable secret>'
LogAction -n <node> -a Command job -m 'Job completed updating enable secret'
11>
</scenario>
</request>
</task>

https://wiki.netyce.com/ Printed on 2026/01/16 09:21

2026/01/16 09:21 9/21 YCE Exchange gateway and API

The job request above is listing the full version, not using any defaults. In the request below, most of
the defaults are used, only the host_ name and the commands are specified. In this case the scenario
used is the “Default command job”. In this case it is demonstrated that the use of the <![CDATA[...
11> encapsulation can be avoided by converting the ‘<’ and ‘>" to &Lt ; en > respectively.

The default schedule time is ‘tomorrow 05:05'. Other defaults are ‘verbose_log="yes"" and
‘sched_now="no".

<task response="">

<head
pas swd="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX "
task name="command job"
task type="xml request"
userid="1loginid"

/>

<request

node name="TESTRNO1001"

<commands>
|

my hostname is <hostname>
|

|hostname = 'testrn01001'|yes i'm <hostname>
|

</commands>

</request>
</task>

Sample response (full):

<task>

<head
error="0000"
passwd="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
sched status="client John Doe (operator) registered"
status="completed"
task name="command job"
task type="xml request"
user func="Operator"
user level="6"
user_name="John Doe"
userid="1loginid"

/>

<request
auth agent="yce"
client level="5"
commands="

I my hostname is <hostname>
|
|hostname = 'testrn0l001'|yes i'm <hostname>

Technical documentation - https://wiki.netyce.com/

Last

;822}8:7/03 guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

12:31

group_id="NetYCE"
node name="TESTRNO1001"
operator="myuserid"
sched day="tomorrow"
sched time="05:05"
stored job description="Issue parameterized commands to the selected
nodes"
stored job name="Default command job"
task module="xch jobs.pl"
task sub="command job"
user level="3"
verbose log="yes"
/>
<response
client code="1006"
client type="RN"
commands="
I my hostname is <hostname>
|
|hostname = 'testrn01001'|yes i'm <hostname>
|
job_descr=" ..."
jobid="0913 0002"
node fqdn="testrn01l00l.netyce.net"
node_name="TESTRNO1001"
node_type="RN+ 3560G-48 DCoreHK"

scenario="
Description <node>
Command_job... task = Command job "

sched job="Sat 14-Sep-2013 05:05:00"
sched queue="yce"
sched req="tomorrow 05:05"
site code="TESTRNO1"
vendor_ type="Cisco IOS"
verbose log="-v"
/>
</task>

Parameters for a stored_job_name

When using a stored_job additional parameters may be provided. These will be treated as if they were
parameters provided in the stored job '[parameter]' section.

NOTE: They will not override existing set values!
<task>

<head abort on error="1"
passwd="password"

https://wiki.netyce.com/ Printed on 2026/01/16 09:21

2026/01/16 09:21 11/21 YCE Exchange gateway and API

req_app="/opt/yce/operate/command job.pl"
req_host="server"

request id="1"

task name="command job"

task type="xml request"

userid="username"

usr_ type="local"

xml decode="yes" />

<request
change id=
client type=
commands=""
description=""
evaluate="no"
node name="your node"
sched day="tomorrow"
sched epoch=""
sched now="yes"
sched queue="yce"
sched server="server"
sched time="5:05"
stored job name="your stored job"
verbose log="yes"
scenario="">
<parameters parameterl="valuel"
parameter2="1100"
some name="2200"
/>
<xml decode>scenario</xml_decode>
</request>
</task>

Basic Command job

The basic command job API call is exactly the same as the Command_job except for the task_name.
task_name is set to 'basic_command_job'

A basic command job can point to both CMDB nodes (the default) or YCE nodes.

Job status

The results of any job can be retrieved using it’s jobID. While the job is in RUNNING state, the details
will keep pace with its progress. The job results can be retrieved from any YCE server once it has
become active.

<task response="">
<head

Technical documentation - https://wiki.netyce.com/

https://wiki.netyce.com/doku.php?id=guides:reference:api:api#command_job

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

pas swd="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
task name="job status"
task type="xml request"
userid="loginid"
/>
<request
jobid="0912 0022"
/>
</task>

Sample response (full):

<task>
<head
error="0000"
passwd="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX "
status="completed"
task name="job status"
task type="xml request"
userid="1loginid"
/>
<request
auth _agent="yce"
jobid="0912 0022"
status_timestamp="2013-09-13 14:32:22"
task module="xch jobs.pl"
task sub="job status"
user level="3"
xch_server="genie"
/>
<response
job state="ABORTED"
jobid="0912 0022"
log details="0912 0022 2013-09-12 16:20:01 Command job on
TESTRNO1001
Tasks: Command job 03-Import cfg (-q -n TESTRN@10O01 —f TESTRNO1001.cmd
-v)
00-ARGUMENTS
Command: import
Starting import on TESTRNO1001
Session stopped
Node TESTRNO1001 is unreachable at 10.10.62.192.
Aborted 2013-09-12 16:20:09 10.34.62.192 finished with Errors
ERROR import cfg failed: Node TESTRNO100O1l is unreachable at
10.10.62.192.
Aborted 05-Logaction (-n TESTRN@1001 -a Command job -m "
Failed executing commands")
06-Stop ()
2013-09-12 16:20:09 ABORTED after 8 seconds "

https://wiki.netyce.com/ Printed on 2026/01/16 09:21

2026/01/16 09:21 13/21

YCE Exchange gateway and API

</ta

log _head="0912 0022 2013-09-12 16:20:01 TESTRNO1001 Command job..."

log info="TESTRNO1001 Command job..."
log server="genie"

log tail="0912 0022 2013-09-12 16:20:09 ABORTED after 8 seconds "

log timestamp="2013-09-12 16:20:09"
operator="NetYCE support"
/>

sk>

If the job exists, but waits execution by the scheduler, there are no job results as yet, but schedule
information can be retrieved if the XCH request was directed at the server where the job was
scheduled.

The results for a job scheduled, but not yet active:

<tas
<h

/>

<r

/>

<r

/>
</ta

k>

ead

error="0000"
PassSWd="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX "
status="completed"

task name="job status"

task type="xml request"

userid="1loginid"

equest

auth_agent="yce"
jobid="0913 0002"

task module="xch jobs.pl"
task sub="job status"
user level="3"

esponse
job status="SCHEDULED"
jobid="0913 0002"

log info="TESTRNO1001l Command job ...

operator="John Doe"

sched job="Sat 14-Sep-2013 05:05:00"
sched queue="yce"

sched start=""

sk>

Reports

Fetc

h report

Previously generated custom reports can be retrieved using the API. The filename or query name is
the only required attribute to fetch the CSV report and have it converted to XML.

Technic

al documentation - https://wiki.netyce.com/

Last
update:
2024/07/03
12:31

using the URL

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

All reports are created in a CSV format and are converted to html (when viewing) or XML (for the API)
when needed. If the original CSV is required, the download link is included when viewing the report.
Generated reports can be downloaded as a CSV file directly using the URL below. Note that the file
path is case sensitive but the report-name is not. To download the file using Dos formatting append
&type=dos to the url.

Created reports are deleted automatically after 30 days, or the period in days defined by the Lookup
tweak 'Age_custom_reports'.

https://<netyce.server>/report/<report-name>

using XCH API

To retrieve the CSV report in XML format using the API, the fetch_report request can be used. The
report_name attribute of the fetch report request can contain:

¢ the case-insensitive custom report name
e the path and filename of the custom report csv file

The latter format (‘report_name="/var/opt/yce/output/my-report-name.csv"') is supported for historic
reasons only. When using this format, the report-name is extracted from the argument and its results
retrieved from the database, if located.

If the report settings indicate it may not be overwritten, the resulting report-name has the date
appended (format: '<myreport>-yyyymmdd'). The report name should then also include this date
for the desired report. If the report-name has no date appended, the latest generated (dated) report
will be returned.

Sample request:

<task response="">
<head
userid="my-login-id"
passwd="XX "
task type="xml request"
task _name="fetch report"
/>
<request
report name="supernet usage"
/>
</task>

The request resulted in the response below. Note that each row in the report is represented as a hash
keyed with row _nnn where the nnn is the row number. The row number is padded with an
appropriate number of zeros to allow alphanumeric sorting.

https://wiki.netyce.com/ Printed on 2026/01/16 09:21

2026/01/16 09:21 15/21 YCE Exchange gateway and API

Included are the timestamp of the generated report, as is the number of rows. The report columns are
listed in their original (sql) order under the key cols.

Column names starting with a digit that do not comply with the XML tag-formats will be automatically
protected by prepending the string x_(e.g. column '1st' will be named ' x_1st' because it starts with
a number).

<task>
<head error="0000" passwd="XX"
status="completed" task id="0121 0006" task name="fetch report"
task type="xml request" userid="my-login-id">
<logs>
<log>Read and converted csv report 'Supernet usage' on 'yceone'</log>
</logs>
</head>
<request auth agent="yce" report name="supernet usage"
task module="xch system.pl" task sub="fetch csv" user level="2" />
<response file date="2019-01-10 04:05:02" report name="supernet usage"
file name="Supernet usage-20190110" query name="Supernet usage" rows="12">
<cols>Ip supernet</cols>
<cols>Net name</cols>
<cols>Net index</cols>
<cols>ClientCode</cols>
<cols>SiteCode</cols>
<cols>Net address</cols>
<cols>Net size</cols>
<cols>Service type</cols>
<row_01 ClientCode="1476" Ip_ supernet="10.21.0.0"
Net address="10.21.63.192" Net index="0" Net name="Inrol" Net size="30"
Service type="ML31 Core 5800-24" SiteCode="BEEKRNO2" />
<row 02 ClientCode="1476" Ip supernet="10.21.0.0"
Net address="10.21.63.204" Net index="3" Net name="Inrol" Net size="30"
Service type="ML31 Core 2x5800-24" SiteCode="STD-RNO1" />
<row_03 ClientCode="1476" Ip supernet="10.21.0.0"
Net address="10.21.63.208" Net index="4" Net name="Inrol" Net size="30"
Service type="ML31 Core 5800-24" SiteCode="BORNRNO1" />
<row 04 ClientCode="1476" Ip supernet="10.21.0.0"
Net address="10.21.63.212" Net index="5" Net name="Inrol" Net size="30"
Service type="ML31 Core 5800-24" SiteCode="STD-RNO3" />
<row 05 ClientCode="1476" Ip supernet="10.21.0.0"
Net address="10.21.9.128" Net index="3" Net name="IPT" Net size="25"
Service type="ML31 Core 5800-24" SiteCode="BORNRNO1l" />
<row 06 ClientCode="1476" Ip supernet="10.21.0.0"
Net address="10.21.48.0" Net index="0" Net name="IPT srv" Net size="27"
Service type="ML31 Core 5800-24" SiteCode="STD-RNO3" />
<row 07 ClientCode="1476" Ip_ supernet="10.21.0.0"
Net address="10.21.48.128" Net index="4" Net name="IPT srv" Net size="27"
Service type="ML31 Core 5800-24" SiteCode="BORNRNO1l" />
<row 08 ClientCode="1476" Ip supernet="10.21.0.0"
Net address="10.21.63.12" Net index="3" Net name="p2p" Net size="30"
Service type="ML31 Core DBC" SiteCode="BORNRNO1" />

Technical documentation - https://wiki.netyce.com/

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

<row 09 ClientCode="1476" Ip supernet="10.21.0.0"
Net address="10.21.47.0" Net index="0" Net name="Servers bk" Net size="28"
Service type="ML31 Core 5800-24" SiteCode="BEEKRNO2" />

<row_10 ClientCode="1476" Ip supernet="10.21.0.0"
Net address="10.21.47.64" Net index="4" Net name="Servers bk" Net size="28"
Service type="ML31 Core 5800-24" SiteCode="BORNRNO1" />

<row 11 ClientCode="1476" Ip supernet="10.21.0.0"
Net address="10.21.47.80" Net index="5" Net name="Servers bk" Net size="28"
Service type="ML31 Core 5800-24" SiteCode="STD-RNO3" />

<row_12 ClientCode="1476" Ip supernet="10.21.0.0"
Net address="10.21.4.0" Net index="8" Net name="Users" Net size="25"
Service type="ML31 Core 5800-24" SiteCode="BORNRNO1" />

</response>

</task>

Run report

Similar to fetch report, the run_report XCH request runs the custom report before downloading
it in XML format. The request is identical, save for the task name attribute which must read
run_report. The request section has only one attribute, report_name, that holds the name of an
existing custom report.

Since custom reports can be defined not to overwrite any results from previous days, the resulting csv
report will have the date appended to the report name ('<report_name>-YYYYMMDD.csv'). When
executing and fetching these reports using this call, a possibly existing file will be overwritten with
todays date.

The response message will be identical to the fetch report call.

Sample request:

<task response="">
<head
userid="my-login-id"
PassSWd="XX "
task type="xml request"
task _name="run report"
log level="1"
/>
<request
report name="supernet usage"
/>
</task>

https://wiki.netyce.com/ Printed on 2026/01/16 09:21

2026/01/16 09:21 17/21 YCE Exchange gateway and API

Infoblox DNS

IPAM and DNS report

Infoblox DNS API plugin

Infoblox DNS registration

Infoblox DNS API plugin

Add Host

The add_host request finds and allocates an IP-address for a new host name in a pre-existing zone. A
free IP-address is located in the included set of IPAM subnets where ‘free’ means no that DNS entry
exists, nor is part of DHCP range. A new ‘Host’-type DNS record is created by default, or an A-record if

specified.

When aliases are specified, those are added to the host record or created as Cname-records

as is appropriate.

<task response="">

<head

/>
<requ
<ho

</h
</req
</task

PassSwd="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX "
task name="infoblox dns"

task type="xml request"

userid="myuserid"

est action type="Add host">

st

comment="RFC 1234"

host domain="existing.zone.name"
host name="my-new-host"

record type="host"

request id="101"

<subnet addr>10.16.238.0/25</subnet addr>

<subnet addr>10.16.239.0/28</subnet addr>
<alias>new-host-aliasl.existing.zone.name</alias>
<alias>new-host-alias2.another.zone.name</alias>
ost>

uest>

The changes are directly made to the life DNS GridMaster. The allocated ip-address and the registered
DNS entry is returned. The task rejects non-existing zones and applies restrictions on the hostnames;
e.g. no dotted hosts, hosts starting with a numeric digit or the use of underscores.

In the request, the host name and zone can be provided as two attributes ‘host name’ and

Technical documentation - https://wiki.netyce.com/

https://wiki.netyce.com/doku.php?id=guides:reference:infoblox:plugin_infoblox_dns
https://wiki.netyce.com/doku.php?id=guides:reference:infoblox:plugin_infoblox_dns

Last

;822}8:7/03 guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

12:31

‘host_domain’, but also combined as a single attribute ‘host_fqdn’. When borh are provided, the
‘host_fqdn’ takes precedence.

Multiple host requests may be included in the task. Each is expected to have a unique request id
(within the task). These hosts are processed in sequence before the task responds.

Add alias

The add alias request updates an existing host record to include the aliases listed in the request.
Existing or overlapping aliases are ignored. The response lists the resulting set of aliases. When no
aliases are provided in the request, the existing set of aliases for this host are listed.

<task response="">
<head
Passwd="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
task name="infoblox dns"
task type="xml request"
userid="myuserid"

/>
<request action type="Add alias">
<host
comment="Dummy RFC 1234"
host domain="al006.some.zone"
host name="te--rn01003"
request id="101"
>
<alias>te--rn01003b.some.other.zone</alias>
<alias>te--rn01003c.some.zone</alias>
</host>
</request>
</task>
Clear alias

The clear_alias request updates an existing host record to remove the aliases listed in the request.
Existing aliases named in the request are removed, others ignored. The response lists the resulting
set of aliases. When no aliases are provided in the request, the existing set of aliases for this host are
listed.

<task response="">

<head
Pas sSwd="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX "
task name="infoblox dns"
task type="xml request"
userid="myuserid"

/>

<request action type="Clear alias">

https://wiki.netyce.com/ Printed on 2026/01/16 09:21

2026/01/16 09:21 19/21 YCE Exchange gateway and API

<host
comment="Dummy RFC 1234"
host domain="al006.some.zone"
host name="te--rn01003"
request id="101"
>
<alias>te--rn01003b.some.other.zone</alias>
<alias>te--rn01003c.some.zone</alias>
</host>
</request>
</task>

Clear host

The clear host request removes the host record including all its ip-addresses and aliases if it is a host-
record. When the DNS name belongs to an A-record or Cname, the appropriate record is removed
from the DNS.

<task>
<head
Pas sSwd="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
task name="infoblox dns"
task type="xml request"
userid="myuserid"
/>
<request action type="Clear host">
<host
comment="Dummy RFC 1234"
host domain="al@06.some.zone"
host name="te--rn01003"
request id="101"
>
</host>
</request>
</task>

Infoblox IPAM and DHCP

Client IPAM tree and DHCP configuration

The IPAM and DHCP report is used to feed an IPAM and/or DHCP configuration tool. YCE includes such
a tool for Infoblox where this report is used internally, but is also used externally.

The report requires the name (ClientCode) of an YCE-client that is fully modeled and uses the YCE ip-
plan(s). Combined with the information found in an IPAM definition table within YCE, a report is
generated where both the IPAM subnet tree and the associated DHCP scopes are fully defined. The
DHCP definition includes the (customer defined) options and their calculated values.

Technical documentation - https://wiki.netyce.com/

Last
update:
2024/07/03
12:31

guides:reference:api:exchange_gateway_and_api https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

The intended use for the report is to automate the (Infoblox) IPAM subtree’s en DHCP scope
provisioning. When, for example, an operator adds a new location or some devices requiring ip-
subnets, these are automatically assigned using the YCE ip-plans for this customer and used in the
respective configurations. Next, the operator initiates the IPAM/DHCP update function for this
customer which results in having the assigned subnets added to the IPAM tree, but also activating the
required DHCP scopes including all their options. Similarly, when removing or freeing a subnet, the
same process removes both DHCP definitions and returns the subnet to the ‘free’ pool.

IPAM/DHCP tree

This report can also be extended to include the IPAM trees of all clients in a client type.

<task>
<head
Pas swd="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX "
task name="infoblox dhcp"
task type="xml request"
userid="loginid"
/>
<request
client="1005"
client type=""
/>
</task>

Sample report - below a single subnet record out of tens of thousands:

<tree
ddns="no"
line number="110"
net address="10.25.236.0"
net mask="255.255.255.224"
net name="Wifi ap 0"
net options="1,15,43,44,46,60,241"
net size="27"
net tier="2"
net type="network"
site type=""

<net members>10.10.254.26</net members>
<net members>10.10.254.58</net members>
<option
option name="subnet-mask"
option number="1" option val="255.255.255.224"
/>
<option
option name="domain-name"
option number="15"

https://wiki.netyce.com/ Printed on 2026/01/16 09:21

2026/01/16 09:21 21/21 YCE Exchange gateway and API

option val="netyce.net"
/>
<option
option name="vendor-encapsulated-options"
option number="43"
option val="F1:04:0A:0C:10:3C"
/>
<option
option name="netbios-name-servers"
option number="44"
>
<option val>10.233.18.77</option val>
</option>
<option
option name="netbios-node-type"
option number="46"
option val="2"
/>
<option
option name="vendor-class-identifier"
option number="60"
option val="Cisco AP c1140"
/>
<option
option_name="WLC-Servers"
option number="241"
option space="WiFi"
>
<option val>10.12.16.60</option val>
</option>
</tree>

From:
https://wiki.netyce.com/ - Technical documentation

Permanent link: :
https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway and_api £%

Last update: 2024/07/03 12:31

Technical documentation - https://wiki.netyce.com/

https://wiki.netyce.com/
https://wiki.netyce.com/doku.php?id=guides:reference:api:exchange_gateway_and_api

	YCE Exchange gateway and API
	Authorization
	Implementation
	XCH configuration

	XCH Transaction types
	Service type execution
	Service task
	Custom variables
	Retrieving information

	Job execution
	Command job
	Parameters for a stored_job_name

	Basic Command job
	Job status

	Reports
	Fetch report
	using the URL
	using XCH API

	Run report

	Infoblox DNS
	IPAM and DNS report
	Infoblox DNS registration
	Add Host
	Add alias
	Clear alias
	Clear host

	Infoblox IPAM and DHCP
	Client IPAM tree and DHCP configuration
	IPAM/DHCP tree

